

Operable Unit 1 – Perimeter Groundwater Monitoring Wells Installation and Sampling Report

Former Dangman Park Manufactured Gas Plant Site Brooklyn, New York NYSDEC Site No. 224047 Index # A2-0552-0606

August 8, 2024

Operable Unit 1 – Perimeter Groundwater Monitoring Wells Installation and Sampling Report

Former Dangman Park Manufactured Gas Plant Site Brooklyn, New York NYSDEC Site No. 224047 Index # A2-0552-0606

August 8, 2024

Prepared By:

Arcadis of New York, Inc. One Lincoln Center, 110 West Fayette Street, Suite 300 Syracuse New York 13202 Phone: 315 446 9120 Fax: 315 449 0017

Our Ref:

30205663

Prepared For:

The Brooklyn Union Gas Company d/b/a National Grid NY 2 Hanson Place Brooklyn New York 11217

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

G:\Clients\National Grid\Dangman\10 Final Reports and Presentations\OU 1 Perimeter Monitoring Wells Report\Groundwater Wells Installation Report_2024-08-08.docx

Certification

I, Steven M. Feldman, certify that I am currently a Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Operable Unit 1 – Perimeter Groundwater Monitoring Wells Installation and Sampling Report, Former Dangman Park Manufactured Gas Plant Site, Brooklyn, New York, NYSDEC Site No. 224047, Index # A2-0552-0606 was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the Division of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10).

Steves Teldmon

Date: 8/8/2024

Contents

A	crony	ms and Abbreviations	iii
E	xecut	ive SummaryES	Տ-1
1	Int	roduction	. 1
2	NY	C DOT Permits	. 3
3	οι	J 1 Perimeter Groundwater Wells Installation and Sampling	. 4
	3.1	General	. 4
	3.2	Reconnaissance and Utility Clearance	. 4
	3.3	Community Air Monitoring	. 4
	3.4	Construction Noise Mitigation Plan	. 5
	3.5	Drilling Soil Borings for Installation of Wells	. 5
	3.6	Perimeter Groundwater Wells Installation	. 6
	3.7	Perimeter Groundwater Sampling	. 7
	3.8	Investigation-Derived Waste Management	. 8
4	Gr	oundwater Quality	. 9
	4.1	Volatile Organic Compounds	. 9
	4.2	Semi-Volatile Organic Compounds	. 9
5	Fir	ndings and Conclusions	10
6	Re	ferences	11

Tables

Table 1	Water-Level Measurements Collected from Monitoring Wells between May 7 and 10, 2024
Table 2	Concentrations of VOCs in Groundwater Samples Collected from OU 1 Perimeter Monitoring Wells
Table 3	Concentrations of SVOCs in Groundwater Samples Collected from OU 1 Perimeter Monitoring Wells
Table 4	Concentrations of VOCs in Quality Assurance/Quality Control Samples
Table 5	Concentrations of SVOCs in Quality Assurance/Quality Control Samples

Figures

Figure 1	Site Location
Figure 2	OU 1 Perimeter Monitoring Well Locations
Figure 3	Volatile Organic Compound in Groundwater Exceeding SGVs

Appendices

- Appendix A NYSDEC's April 3, 2023 Letter Re: Groundwater Well Installations
- Appendix B Soil Boring Logs
- Appendix C Field Photograph Log
- Appendix D Well Construction Logs
- Appendix E Groundwater Sampling Forms
- Appendix F Data Usability Summary Reports

Acronyms and Abbreviations

ADT	Aquifer Drilling & Testing, Inc.
Arcadis	Arcadis of New York, Inc.
ASP	Analytical Services Protocol
bls	below land surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
CAMP	Community Air Monitoring Plan
DER	Division of Environmental Remediation
DOT	Department of Transportation
DUSR	data usability summary report
ELAP	Environmental Laboratory Approval Program
EPA	Environmental Protection Agency
Eurofins	Eurofins Environment Testing Northeast, LLC
ft	feet
FSP	Field Sampling Plan
HASP	Health and Safety Plan
IDW	investigation-derived waste
IRM	interim remedial measure
MGP	manufactured gas plant
NAPL	non-aqueous phase liquid
National Grid	The Brooklyn Union Gas Company d/b/a National Grid NY
NYC DOT	New York City Department of Transportation
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
OU	Operable Unit
ORP	oxidation-reduction potential
PAHs	polycyclic aromatic hydrocarbons
PID	photoionization detector
ppm	parts per million
PVC	polyvinyl chloride
QAPP	Quality Assurance Project Plan

www.arcadis.com

G:\Clients\National Grid\Dangman\10 Final Reports and Presentations\OU 1 Perimeter Monitoring Wells Report\Groundwater Wells Installation Report_2024-08-08.docx

Operable Unit 1 – Perimeter Groundwater Monitoring Wells Installation and Sampling Report

QA/QC	quality assurance/quality control
Report	Operable Unit 1 – Perimeter Groundwater Monitoring Wells Installation and Sampling Report
RI	Remedial Investigation
Site	Former Dangman Park Manufactured Gas Plant
SC	Site Characterization
SGVs	Ambient Water Quality Standards and Guidance Values
SRI	Supplemental Remedial Investigation
SOP	Standard Operating Procedure
SVOCs	semi-volatile organic compounds
ug/L	micrograms per liter
VOCs	volatile organic compounds
Work Plan	Operable Unit 1 – Perimeter Groundwater Monitoring Wells Installation and Sampling Work Plan

Executive Summary

This Operable Unit 1 – Perimeter Groundwater Monitoring Wells Installation and Sampling Report (Report) has been prepared by Arcadis of New York, Inc. (Arcadis) on behalf of The Brooklyn Union Gas Company d/b/a National Grid NY (National Grid) to document the perimeter monitoring well installation and groundwater sampling activities that were conducted along Neptune Avenue and West 5th Street in association with Operable Unit 1 (OU 1) of the former Dangman Park Manufactured Gas Plant (MGP) site (the Site; **Figure 1**). The New York State Department of Environmental Conservation (NYSDEC) requested these activities in a letter to National Grid dated April 3, 2023 to "...monitor post-remediation conditions and ensure no off-site migration of contamination has occurred due to the site's redevelopment." As detailed herein, installation and sampling of the perimeter groundwater Monitoring Wells Installation and Sampling Work Plan (Work Plan) dated October 3, 2023. The Work Plan was originally submitted to the NYSDEC on July 18, 2023; the revised Work Plan dated October 3, 2023 addressed comments provided in the NYSDEC's letter to National Grid dated August 10, 2023, as discussed between the NYSDEC and National Grid. The Work Plan was approved by the NYSDEC in a letter to National Grid dated October 31, 2023.

The former Dangman Park MGP Site is located at 486 Neptune Avenue, Brooklyn, New York and is contained within Block 7273, Lot 1001 and Lot 25 of Block 7273; neither of these properties is owned by National Grid. The portion of the Site within Lot 1001 was previously developed with a shopping center. The eastern portion of the shopping center was situated above the former MGP structure locations and was demolished in late 2016/early 2017, in advance of redevelopment construction of the commercial structure that was completed in 2019. The portion of the Site within Lot 25 is a parking lot for an existing apartment building. In June 2019, the Site was divided into two operable units. The OU 1 boundary encompasses the portion of the Site on Lot 1001. The OU 2 boundary encompasses the portion of the Site on Inter Site was on Figure 2.

Installation and sampling of the OU 1 perimeter monitoring wells was conducted between March and May 2024. The activities described herein to install and sample the OU 1 perimeter monitoring wells included the following:

- Drilled and installed both a water-table monitoring well (screened 6 to 16 feet below land surface [ft bls]) and deep groundwater monitoring well (screened 80 to 90 ft bls) at two locations along Neptune Avenue and two locations along West 5th Street (Figure 2). The final locations of the four perimeter monitoring well pairs (eight wells total) were modified (relative to the Work Plan) based on a reconnaissance of the area in November 2023 prior to mobilizing the drill rig. In an email dated January 16, 2024, National Grid proposed adjusted OU 1 perimeter monitoring well locations to the NYSDEC based on accessibility and observed utility mark outs. The NYSDEC approved the adjustments in an email to National Grid dated January 19, 2024.
- Collected a groundwater sample from each of the eight perimeter monitoring wells using low-flow sampling techniques and a submersible pump. The groundwater samples were submitted to Eurofins Environment Testing Northeast, LLC (Eurofins). Eurofins is a laboratory with current Environmental Laboratory Approval Program (ELAP) certificates from the New York State Department of Health (NYSDOH) for analysis of volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) in accordance with Environmental Protection Agency (EPA) SW-846 Methods 8260D and 8270E, respectively. Field parameters including pH, oxidation-reduction potential (ORP), temperature, conductivity, dissolved oxygen, and turbidity were collected during groundwater sampling and each well was gauged for the absence/presence of non-aqueous phase liquid (NAPL) prior to purging.

Based on the data obtained from installing and sampling the OU 1 perimeter monitoring wells, the following are the findings and conclusions:

- There were no observations of visible staining or NAPL and no obvious odors were noted during the monitoring well soil boring drilling activities.
- NAPL was not detected in any of the monitoring wells prior to or during well development and groundwater sampling activities.
- No MGP-related VOCs were detected above the laboratory reporting limit in the groundwater samples. Two non-MGP-related VOCs (bromodichloromethane and chloroform) were detected in the groundwater samples.
- No SVOCs were detected above the laboratory reporting limit in the groundwater samples.
- The post-remediation VOC and SVOC groundwater data collected from the OU 1 perimeter monitoring wells in May 2024 demonstrate that the OU 1 remedy was effective, and that off-site migration of MGP-related constituents has not occurred due to the redevelopment activities on Lot 1001.

1 Introduction

This Operable Unit 1 – Perimeter Groundwater Monitoring Wells Installation and Sampling Report (Report) documents the monitoring well installation and groundwater sampling activities that were conducted along the perimeter of Operable Unit 1 (OU 1) of the former Dangman Park Manufactured Gas Plant (MGP) site (the Site; **Figure 1**), pursuant to conversations between The Brooklyn Union Gas Company d/b/a National Grid NY (National Grid) and the New York State Department of Environmental Conservation (NYSDEC) and a NYSDEC letter dated April 3, 2023 (**Appendix A**). The installation and sampling of the perimeter groundwater monitoring wells Installation and Sampling Work Plan (Work Plan) dated October 3, 2023 (Arcadis 2023). The Work Plan was originally submitted to the NYSDEC on July 18, 2023; the revised Work Plan dated October 3, 2023 addressed comments provided in the NYSDEC's letter to National Grid dated August 10, 2023, as discussed between the NYSDEC and National Grid. The Work Plan was approved by the NYSDEC in a letter to National Grid dated October 31, 2023.

The Site is identified as NYSDEC Site No. 224047. This Report has been prepared by Arcadis of New York, Inc. (Arcadis) on behalf of National Grid, in accordance with the Work Plan and requirements of a Multi-Site Order on Consent and Administrative Settlement (Consent Order; Index # A2-0552-0606) that was entered into by National Grid and the NYSDEC in February 2007; the Consent Order was most recently modified on November 24, 2023. This Report has also been prepared in accordance with the NYSDEC's Division of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10; NYSDEC 2010).

The former Dangman Park MGP Site is located at 486 Neptune Avenue, Brooklyn, New York and is contained within Block 7273, Lot 1001 and Lot 25 of Block 7273; neither of these properties is owned by National Grid. The portion of the Site within Lot 1001 was previously developed with a shopping center. The eastern portion of the shopping center was situated above the former MGP structure locations and was demolished in late 2016/early 2017, in advance of redevelopment construction of the commercial structure that was completed in 2019. The portion of the Site within Lot 25 is a parking lot for an existing apartment building. In June 2019, the Site was divided into two operable units. The OU 1 boundary encompasses the portion of the Site on Lot 1001. The OU 2 boundary encompasses the portion of the Site on Interval.

Prior to redevelopment of Lot 1001, the extent of MGP-related impacts was delineated during the NYSDECapproved Site Characterization (SC) and Remedial Investigation (RI) activities conducted between 2009 and 2013, as detailed in the NYSDEC-approved RI Report (Arcadis 2014). The extent of impacts was corroborated by the subsequent Supplemental Remedial Investigation (SRI) conducted by National Grid and the property owner's redevelopment geotechnical investigation soil borings (Arcadis 2016). More than 90 soil borings were drilled in association with the Site and 15 monitoring wells were installed specifically in association with OU 1 (**Figure 2**). The MGP-related impacts were observed in areas generally within the footprint of the former MGP operations and areas located downgradient of those operations. The constituents of concern are benzene, toluene, ethylbenzene, and xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAHs).

In light of the redevelopment of Lot 1001, with NYSDEC's approval, the following activities were conducted by National Grid between 2016 and 2022:

- Monitoring wells located on and west of OU 1 were abandoned in 2016 and the In-Situ Treatment and Excavation Interim Remedial Measures (IRMs) were conducted in 2017, as detailed in the NYSDECapproved Construction Completion Report (Arcadis 2020); and
- Monitoring wells MW-14 and MW-20 located west and northwest of OU 1, respectively, were abandoned in 2022 (Arcadis 2022a and 2022b).

The redevelopment activities on OU 1 are complete with the commercial structure and OU 1 perimeter groundwater data are required by NYSDEC to "...monitor post-remediation conditions and ensure no off-site migration of contamination has occurred due to the site's redevelopment." (NYSDEC 2023). As detailed herein, both a water-table monitoring well (screened 6 to 16 feet below land surface [ft bls]) and deep groundwater monitoring well (screened 80 to 90 ft bls) were installed at two locations along Neptune Avenue and two locations along West 5th Street (**Figure 2**). The groundwater samples collected from each well were submitted for the analysis of volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs).

The remainder of this Report is organized as follows to describe the perimeter groundwater monitoring well installation and groundwater sampling activities:

- Section 2 New York City Department of Transportation (NYC DOT) Permits the perimeter monitoring well locations (Figure 2) are situated in areas (sidewalks) that required obtaining NYC DOT permits prior to conducting field activities to install the wells.
- Section 3 OU 1 Perimeter Groundwater Wells Installation and Sampling summarizes the perimeter monitoring wells drilling and installation activities, groundwater sampling activities, and management of investigation-derived waste (IDW).
- Section 4 Groundwater Quality summarizes the groundwater quality data collected from the perimeter monitoring wells during groundwater sampling.
- Section 5 Findings and Conclusions presents the findings and conclusions associated with the perimeter monitoring wells soil boring drilling and groundwater sampling activities.
- Section 6 References presents a list of documents referenced in this Report.

2 NYC DOT Permits

As previously identified, the OU 1 perimeter groundwater monitoring wells (**Figure 2**) are situated in areas (sidewalks) that required NYC DOT permits prior to conducting field activities to install the wells. The permits were obtained by Arcadis' drilling subcontractor (Aquifer Drilling & Testing, Inc. [ADT]) and kept at the active work area. The field work was conducted in accordance with the permit requirements, including the stipulated work hours (9AM – 4PM, Monday to Friday).

3 OU 1 Perimeter Groundwater Wells Installation and Sampling

3.1 General

This section describes the procedures for conducting community air monitoring, installing the monitoring wells, collecting groundwater samples, and managing IDW. The field work was conducted in accordance with Arcadis' current health and safety plan (HASP) for the Site and ADT's HASP. Air monitoring was conducted in the worker breathing zone during implementation of the work activities. There were no exceedances of the action levels identified in the HASP.

3.2 Reconnaissance and Utility Clearance

A reconnaissance of the proposed perimeter groundwater monitoring well locations was conducted by National Grid, Arcadis, and ADT on November 17, 2023 prior to mobilizing the drill rig to verify existing conditions relative to the locations shown on Figure 2 of the Work Plan. The final locations of the four perimeter monitoring well pairs (eight wells total) were modified (relative to the Work Plan) based on the reconnaissance of the area. In an email dated January 16, 2024, National Grid proposed adjusted OU 1 perimeter monitoring well locations to the NYSDEC based on accessibility and observed utility mark outs. The NYSDEC approved the adjustments in an email to National Grid dated January 19, 2024.

Prior to utility clearance and drill rig mobilization, New York 811 was contacted by ADT to mark underground utilities in the areas where intrusive activities (i.e., drilling and well installation) were to occur. Additionally, a utility locating subcontractor (Ground Penetrating Radar Systems, LLC) was utilized to identify and mark the locations of utilities detected in the field in the vicinity of the monitoring well locations. Given the numerous utilities present, each monitoring well location was cleared of utilities to a depth of 5 ft bls by ADT utilizing soft digging techniques (e.g., hand digging). Consistent with the Work Plan, a separate borehole was cleared for installation of the water-table and deep monitoring wells at each of the four perimeter well pairs. The utility clearance activities were conducted between March 12 and 15, 2024.

Based on the utility locating findings, monitoring wells MW-21S and MW-21D are approximately 20 feet apart and monitoring wells MW-22S and MW-22D are approximately 20 feet apart. Monitoring wells MW-23S and MW-23D are approximately 5 feet apart and monitoring wells MW-24S and MW-24D are approximately 5 feet apart.

3.3 Community Air Monitoring

As identified in the Work Plan, Arcadis conducted community air monitoring during ground intrusive activities (utility clearance and drilling activities) in general accordance with the NYSDEC-approved Former Dangman Park Manufactured Gas Plant Site Community Air Monitoring Plan (CAMP; Arcadis 2017). Specifically, Arcadis conducted real-time monitoring for VOCs and particulate matter less than 10 micrometers in diameter (PM₁₀) during ground intrusive activities using two air monitoring stations. The stations were located adjacent to the work zone; one upwind of the intrusive work activities and the other downwind. Periodic observational monitoring for the presence of MGP-related odors was also conducted by Arcadis during drilling activities based on qualitative

and subjective assessment of odor intensity (e.g., not detectable, slight, moderate, etc.). There were no MGP-related odors identified, nor were any odor complaints received.

There were no exceedances of the community air monitoring action levels due to the ground intrusive activities.

3.4 Construction Noise Mitigation Plan

Prior to conducting intrusive field work, ADT completed the construction noise mitigation plan required by the New York City Department of Environmental Protection, certifying that their construction devices and equipment to be used comply with all applicable rules in Title 15 Rules of the City of New York – RCNY Chapter 28. The completed construction noise mitigation plan was posted at the active work area.

3.5 Drilling Soil Borings for Installation of Wells

After the perimeter monitoring well pair locations were cleared of utilities (Section 3.2), a soil boring was drilled for the water-table well and a separate soil boring was drilled for the deep well using sonic drilling techniques. Prior to drilling at each of the four perimeter well pairs, a work zone was set up that included temporary chain link fencing encompassing each active work zone, with sound barrier panels/blankets attached to the fencing. Each work zone maintained the minimum 5 foot clear pedestrian walk on the sidewalk as stipulated in the NYC DOT permits (Section 2).

The soil boring drilling activities were conducted between March 19 and April 3, 2024. As previously identified, the two separate boreholes at the MW-23S/MW-23D and MW-24S/MW-24D perimeter monitoring well pairs are approximately 5 feet apart, and the two separate boreholes at the MW-21S/MW-21D and MW-22S/MW-22D perimeter monitoring well pairs are approximately 20 feet apart. At each borehole, continuous soil sampling commenced at 5 ft bls and was conducted by advancing a 5-foot-long core barrel. Once the core barrel was advanced, a secondary or "override" casing was advanced down to the same depth as the core barrel to keep the borehole from collapsing while the core barrel was removed. The soil borings associated with the shallow and deep monitoring wells were drilled to depths of 19 and 93 ft bls, respectively.

Soil recovered from each sample interval was visually characterized by Arcadis for color, texture, and moisture content as described in the National Grid Field Descriptions of Samples for Former Manufactured Gas Plant (MGP) Sites (Appendix B [Field Sampling Plan (FSP)] of the RI Work Plan) and the soil was field screened with a photoionization detector (PID). There were no observations of visible staining or non-aqueous phase liquid (NAPL) and no obvious odors were noted. PID readings of 0.0 parts per million (ppm) were recorded in the soil cores collected from the MW-21D, MW-22S, MW-23S, and MW-24S boreholes. PID readings above 0.0 ppm were recorded in some of the soil cores collected from the MW-21D, MW-22D, MW-23D, and MW-24D boreholes as follows:

- MW-21S:
 - PID readings ranging from 0.5 to 2.0 ppm were recorded in the 5 to 10 ft bls soil core.
- MW-22D:
 - PID readings ranging from 0.1 to 1.1 ppm were recorded in the soil cores collected between 50 and 70 ft bls.
- MW-23D:
 - A PID reading of 0.6 ppm was recorded in the 5 to 10 ft bls soil core.

- MW-24D:
 - PID readings ranging from 0.2 to 0.4 ppm were recorded in the 5 to 10 ft bls soil core.
 - A PID reading of 0.1 ppm was recorded in the 55 to 60 ft bls soil core.

The soil boring logs are provided in **Appendix B**. The soil cores were photographed and representative soil core photographs, along with a photograph of the monitoring well MW-24D work zone during drilling activities, are included in a field photograph log which is provided in **Appendix C**.

As identified above, the field work was conducted in accordance with Arcadis' current HASP for the Site including air monitoring in the worker breathing zone during implementation of the work activities. The air was monitored using a PID, a multi-gas meter, and a real-time aerosol monitor. There were no exceedances of the action levels identified in the HASP.

Soil generated during drilling was containerized in Department of Transportation (DOT)-approved 55-gallon steel drums appropriately labeled with the contents, generator, location, and date for off-site transportation and treatment/disposal in accordance with applicable rules and regulations (see Section 3.8 for additional details regarding IDW management).

3.6 Perimeter Groundwater Wells Installation

An OU 1 perimeter monitoring well pair, each consisting of a water-table monitoring well (screened 6 to 16 ft bls) and deep groundwater monitoring well (screened 80 to 90 ft bls), were installed at two locations along Neptune Avenue and two locations along West 5th Street (**Figure 2**). The monitoring wells installation activities were conducted between March 20 and April 3, 2024.

The screen intervals for the water-table and deep wells were identified in the Work Plan, with the following NYSDEC requirement: the actual screen interval for any of the deep groundwater monitoring wells will be modified in the field and the screen length increased from 10 feet to 15 feet, if needed, based on field observation of impacts (if any). As also identified in the Work Plan, observed impacts to be used to identify the actual screen interval and/or modify deep well screen lengths were the presence of visible staining, NAPL, and/or PID readings greater than 10 ppm identified when screening the soil recovered from each of the soil borings drilled to install the deep perimeter monitoring wells as described above in Section 3.5. There were no observations of visible staining or NAPL and the highest PID reading in a deep monitoring well soil boring was 1.1 ppm (MW-22D [60 to 65 ft bls soil core]); therefore, the screen intervals did not need to be modified.

The monitoring wells were installed in separate boreholes using the protocols presented in the Arcadis Monitoring Well Installation Standard Operating Procedure (SOP) (Appendix B [FSP] of the RI Work Plan [Arcadis 2011]). The monitoring wells were constructed using 2-inch diameter Schedule 40 polyvinyl chloride (PVC) casing and screen. The water-table perimeter monitoring wells (MW-21S through MW-24S) were completed to a depth that permits the screened section of the well to generally straddle the water table (screened from 6 to 16 ft bls similar to the water-table monitoring wells that were installed during the RI and SC). Perimeter monitoring wells MW-21D through MW-24D are deep groundwater monitoring wells that were completed with a screen interval from 80 to 90 ft bls. A 3-foot-long PVC sump was installed at the bottom (below the screen) of each perimeter monitoring well. The monitoring wells were completed at the surface with a locking cap and a flush-mount protective casing. The monitoring well construction logs are provided in **Appendix D**.

Immediately prior to development, each monitoring well was gauged for the presence of NAPL using the procedures described in the Arcadis Water-Level and NAPL Thickness Measurement Procedures SOP (Appendix

B [FSP] of the RI Work Plan). NAPL was not detected in any of the wells prior to or during development. Each well was then developed by surging and pumping water from the well using the procedures outlined in the Arcadis Monitoring Well Development SOP (Appendix B [FSP] of the RI Work Plan). Surging and pumping continued until the turbidity was below 50 nephelometric turbidity units and pH and conductivity measurements had stabilized. The monitoring well development activities were conducted between April 4 and 9, 2024.

Restoration of the work areas was performed by ADT in accordance with NYC DOT requirements. The work area restoration activities (sidewalk flag replacement at each monitoring well location) were conducted between April 9 and 16, 2024.

IDW generated during monitoring well installation, development, and equipment decontamination was containerized in appropriately labeled DOT-approved 55-gallon steel drums for off-site transportation and treatment/disposal in accordance with applicable rules and regulations (see Section 3.8 for additional details regarding IDW management).

After the well installation activities, N & P Engineering, Architecture and Land Surveying, PLLC, a New York State licensed surveyor, field surveyed the monitoring well locations. For each monitoring well, the surveyor determined the location relative to the New York State Plane Coordinate System, and the ground surface elevation and measuring point elevation (defined as the top of the inner PVC casing) relative to the National Geodetic Vertical Datum of 1929. The monitoring well field survey activities were conducted on May 9, 2024.

3.7 Perimeter Groundwater Sampling

Arcadis collected a groundwater sample from each OU 1 perimeter monitoring well approximately one month after well development. The groundwater sampling activities were conducted between May 7 and 10, 2024. Prior to purging and sampling, each well was gauged for the presence of NAPL. NAPL was not detected in any of the wells prior to groundwater sampling. The depth to groundwater in the monitoring wells ranged from 5.16 to 7.12 feet below the measuring point (**Table 1**), which is approximately equivalent to 5.66 to 7.57 ft bls. The monitoring wells were purged using low-flow methods as described in the Low-Flow Groundwater Purging and Sampling Procedures for Monitoring Wells SOP (Appendix B [FSP] of the NYSDEC-approved RI Work Plan).

Following purging, a groundwater sample was collected from each monitoring well using low-flow sampling techniques and a submersible pump. Quality assurance/quality control (QA/QC) samples were also collected during the groundwater sampling activities. The groundwater samples and QA/QC samples were submitted to Eurofins Environment Testing Northeast, LLC (Eurofins) for the analysis of VOCs and SVOCs. Eurofins is a laboratory with current Environmental Laboratory Approval Program (ELAP) certificates from the New York State Department of Health (NYSDOH) for the analysis of VOCs and SVOCs in accordance with EPA SW-846 Methods 8260D and 8270E, respectively. Field parameters including pH, oxidation-reduction potential (ORP), temperature, conductivity, dissolved oxygen, and turbidity were collected during groundwater sampling using the procedures outlined in the aforementioned Low-Flow Groundwater Purging and Sampling Procedures for Monitoring Wells SOP and recorded on groundwater sampling forms. The groundwater sampling forms are provided in **Appendix E**.

The groundwater samples were analyzed under a standard turnaround time in accordance with the analytical methods listed in the Quality Assurance Project Plan (QAPP) (Appendix C of the RI Work Plan). The analytical data were transferred from the laboratory and maintained in a database format. Eurofins provided Electronic Data Deliverables, which were uploaded directly into the project database. Eurofins produced NYSDEC Analytical

Services Protocol (ASP) Category B deliverable packages that contained all information needed for formal validation of the data.

3.8 Investigation-Derived Waste Management

IDW (e.g., soil, groundwater, plastic sheeting, personal protective equipment, decontamination water, concrete debris, etc.) was containerized and transported for off-site treatment/disposal as non-hazardous in accordance with applicable rules and regulations. IDW was containerized in DOT-approved 55-gallon steel drums that were properly labeled with the contents, generator, location, and date. IDW was transported for off-site treatment/disposal by National Grid's contractor (Veolia ES Technical Solutions, L.L.C.).

4 Groundwater Quality

This section summarizes the groundwater quality data that were generated from analysis of the groundwater samples that were collected as described in Section 3.7. The VOC and SVOC laboratory analytical data are summarized in **Tables 2** through **5**. The VOC and SVOC data were compared to the NYSDEC Division of Water Technical and Operational Guidance Series 1.1.1 (TOGS) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (NYSDEC, reissued June 1998, and revised April 2000, June 2004, and February 2023).

Data validation was performed by Arcadis in accordance with applicable requirements and guidelines, including analytical method performance criteria, laboratory control limits, and NYSDEC ASP requirements. These procedures are specific regarding evaluation of holding time, surrogate and spike recoveries, precision of duplicate measurements, instrument performance, blank contamination, compound identification, and compound quantification. Additional information is provided in the QAPP (Appendix C of the RI Work Plan). Following completion of the data validation, data usability summary reports (DUSRs) were prepared by Arcadis in accordance with DER-10 and are provided in **Appendix F**. As detailed in the DUSRs, the overall system performance was acceptable.

4.1 Volatile Organic Compounds

No MGP-related VOCs were detected above the laboratory reporting limit in the groundwater samples (**Table 2**). Two non-MGP-related VOCs (bromodichloromethane and chloroform) were detected in the groundwater samples. Chloroform was the only VOC detected above its respective Ambient Water Quality Standard or Guidance Value; specifically, chloroform was detected at a concentration of 51 micrograms per liter (ug/L) in the groundwater sample collected from monitoring well MW-23S (**Figure 3**), exceeding the standard of 7 ug/L.

The VOC QA/QC sample data (**Table 4**) were incorporated into the data usability assessment performed by Arcadis. The detections in the VOC QA/QC samples did not adversely affect the acceptability of the groundwater samples results.

4.2 Semi-Volatile Organic Compounds

No SVOCs were detected above the laboratory reporting limit in the groundwater samples (**Table 3**) or the QA/QC samples (**Table 5**).

5 Findings and Conclusions

The section summarizes the findings of the OU 1 perimeter monitoring wells installation and groundwater sampling activities and presents the conclusions. Based on the data obtained from installing and sampling the OU 1 perimeter monitoring wells, the following are the findings and conclusions:

- There were no observations of visible staining or NAPL and no obvious odors were noted during the monitoring well soil boring drilling activities.
- NAPL was not detected in any of the monitoring wells prior to or during well development and groundwater sampling activities.
- No MGP-related VOCs were detected above the laboratory reporting limit in the groundwater samples. Two non-MGP-related VOCs (bromodichloromethane and chloroform) were detected in the groundwater samples.
- No SVOCs were detected above the laboratory reporting limit in the groundwater samples.
- The post-remediation VOC and SVOC groundwater data collected from the OU 1 perimeter monitoring wells in May 2024 demonstrate that the OU 1 remedy was effective, and that off-site migration of MGP-related constituents has not occurred due to the redevelopment activities on Lot 1001.

6 References

- Arcadis. 2011. Remedial Investigation Work Plan, Former Dangman Park Manufactured Gas Plant Site, Brooklyn, New York, Site No. 224047, Index # A2-0552-0606. September.
- Arcadis. 2014. Remedial Investigation Report, Former Dangman Park Manufactured Gas Plant Site, Brooklyn, New York, Site No. 224047, Index # A2-0552-0606. July.
- Arcadis. 2016. Former Dangman Park Manufactured Gas Plant Site Supplemental Remedial Investigation Report, Brooklyn, New York, NYSDEC Site No. 224047, Index # A2-0552-0606. September 29.
- Arcadis. 2017. Former Dangman Park Manufactured Gas Plant Site Community Air Monitoring Plan, Brooklyn, New York, NYSDEC Site No. 224047, Index # A2-0552-0606. June.
- Arcadis. 2020. Construction Completion Report, Former Dangman Park Manufactured Gas Plant Site, Borough of Brooklyn, Kings County, New York, Site No. 224047. June.
- Arcadis. 2022a. Letter from Steven Feldman and M. Cathy Geraci, Arcadis to John Miller, PE, NYSDEC, RE: MW-14 Decommissioning Activities. May 16.
- Arcadis. 2022b. Letter from Steven Feldman and M. Cathy Geraci, Arcadis to John Miller, PE, NYSDEC, RE: MW-20 Sampling and Decommissioning Activities. September 1.
- Arcadis. 2023. Operable Unit 1 Perimeter Groundwater Monitoring Wells Installation and Sampling Work Plan, Former Dangman Park Manufactured Gas Plant Site, Brooklyn, New York, NYSDEC Site No. 224047, Index # A2-0552-0606. Revised October 3.
- NYSDEC. 2010. DER-10, Technical Guidance for Site Investigation and Remediation, May.
- NYSDEC. 2023. Letter from John Miller, PE, NYSDEC, RE: Groundwater Well Installations. April 3.

Tables

ARCADIS

Table 1 Water-Level Measurements Collected from Monitoring Wells between May 7 and 10, 2024 Former Dangman Park MGP Site Brooklyn, New York

Monitoring Well Designation	Elevation of Measuring Point (feet NGVD 29)	Depth to Water (feet bmp)	Water-Level Elevation (feet NGVD 29)
MW-21S	9.87	7.12	2.75
MW-21D	9.87	6.90	2.97
MW-22S	9.23	6.44	2.79
MW-22D	9.47	6.51	2.96
MW-23S	7.99	5.16	2.83
MW-23D	8.03	5.29	2.74
MW-24S	8.75	6.07	2.68
MW-24D	8.77	5.99	2.78

Acronyms and Abbreviations:

bmp = below measuring point

NGVD 29 = National Geodetic Vertical Datum of 1929

Table 2Concentrations of VOCs in Groundwater Samples Collected from OU 1 Perimeter Monitoring WellsFormer Dangman Park MGP SiteBrooklyn, New York

Sample ID: Sample Date: Compound (Units in ug/L)	NYSDEC TOGS (1.1.1) Ambient Water Quality Standards and Guidance Values (ug/L)	MW-21D 05/10/24	DUP051024 05/10/24 MW-21D Duplicate	MW-21S 05/09/24	MW-22D 05/09/24	MW-22S 05/09/24	MW-23D 05/08/24	MW-23S 05/08/24	MW-24D 05/07/24	MW-24S 05/07/24
1,1,1-Trichloroethane	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethane	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 J	<1.0	<1.0
1,1-Dichloroethene	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trichlorobenzene	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trimethylbenzene	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromo-3-Chloropropane	0.04	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<1.0	<1.0	<1.0	<1.0
1,2-Dibromoethane	0.0006	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroethane	0.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-Trimethylbenzene	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichlorobenzene	3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dioxane	0.35	<50	<50	<50	<50	<50	<50	<50	<50	<50
2-Butanone (MEK)	50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2-Hexanone	50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
4-Methyl-2-pentanone (MIBK)		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Acetone	50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 B	<5.0
Benzene	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.4	<1.0	<1.0
Bromoform	50	<1.0 J	<1.0 J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromomethane	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Carbon disulfide	60	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

See notes on last page.

Table 2Concentrations of VOCs in Groundwater Samples Collected from OU 1 Perimeter Monitoring WellsFormer Dangman Park MGP SiteBrooklyn, New York

Sample ID: Sample Date: Compound (Units in ug/L)	NYSDEC TOGS (1.1.1) Ambient Water Quality Standards and Guidance Values (ug/L)	MW-21D 05/10/24	DUP051024 05/10/24 MW-21D Duplicate	MW-21S 05/09/24	MW-22D 05/09/24	MW-22S 05/09/24	MW-23D 05/08/24	MW-23S 05/08/24	MW-24D 05/07/24	MW-24S 05/07/24
Carbon tetrachloride	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	7	1.7	1.7	<1.0	0.85 J	<1.0	0.67 J	51	1.3	<1.0
Chloromethane	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 J	<1.0 J	<1.0	<1.0
cis-1,2-Dichloroethene	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-Dichloropropene	0.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Cyclohexane		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane	50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dichlorodifluoromethane	5	<1.0 J	<1.0 J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Isopropylbenzene	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methyl acetate		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methylcyclohexane		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methylene Chloride	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 B	<1.0	<1.0	<1.0
n-Butylbenzene	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
N-Propylbenzene	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
sec-Butylbenzene	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Styrene	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
tert-Butylbenzene	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-Dichloroethene	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-Dichloropropene	0.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

See notes on last page.

Table 2Concentrations of VOCs in Groundwater Samples Collected from OU 1 Perimeter Monitoring WellsFormer Dangman Park MGP SiteBrooklyn, New York

Sample ID: Sample Date: Compound (Units in ug/L)	Trator squarty	MW-21D 05/10/24	DUP051024 05/10/24 MW-21D Duplicate	MW-21S 05/09/24	MW-22D 05/09/24	MW-22S 05/09/24	MW-23D 05/08/24	MW-23S 05/08/24	MW-24D 05/07/24	MW-24S 05/07/24
Trichlorofluoromethane	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Xylenes, Total	5	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0

Notes:

1. Bold indicates detection above laboratory Method Detection Limit.

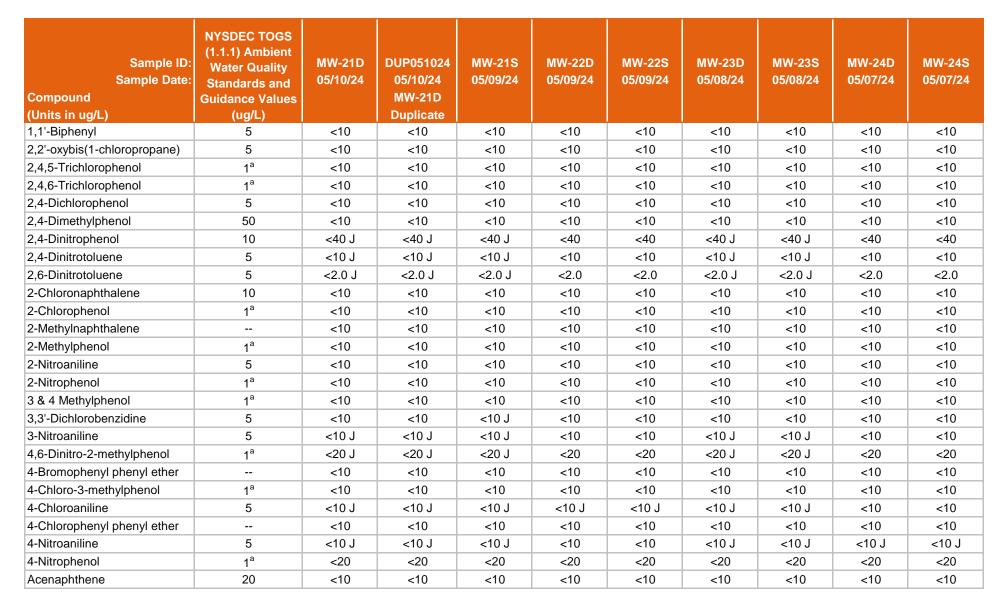
Compound concentration exceeds Ambient Water Quality Standard or Guidance Value.

Acronyms and Abbreviations:

B = Compound is considered non-detect at the listed value due to associated blank contamination.

J = estimated value

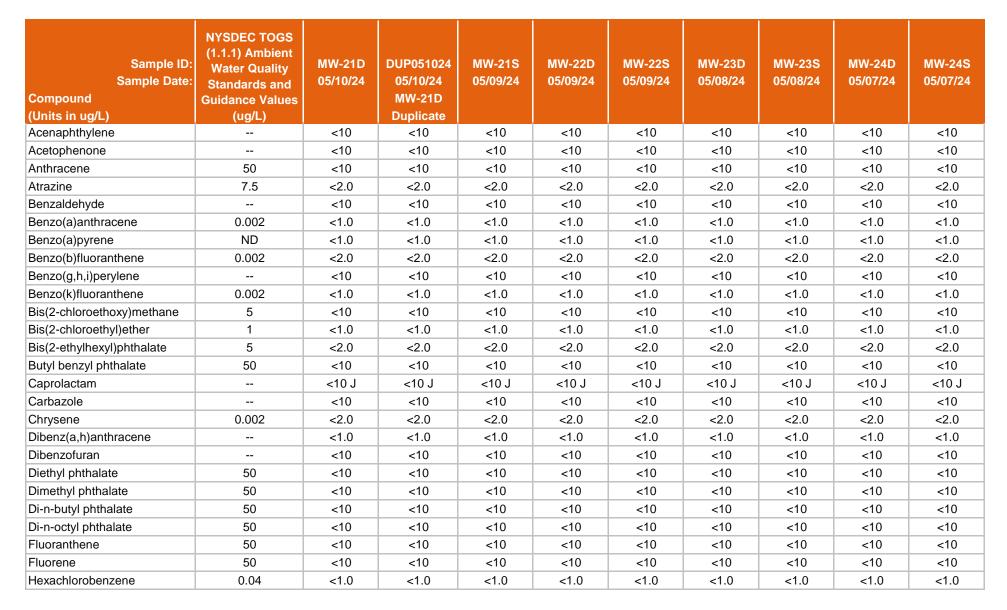
-- = not available


NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

ug/L = micrograms per liter

VOCs = volatile organic compounds


Table 3 Concentrations of SVOCs in Groundwater Samples Collected from OU 1 Perimeter Monitoring Wells Former Dangman Park MGP Site Brooklyn, New York

See notes on last page.

Table 3 Concentrations of SVOCs in Groundwater Samples Collected from OU 1 Perimeter Monitoring Wells Former Dangman Park MGP Site Brooklyn, New York

See notes on last page.

Table 3 Concentrations of SVOCs in Groundwater Samples Collected from OU 1 Perimeter Monitoring Wells Former Dangman Park MGP Site Brooklyn, New York

Sample ID: Sample Date: Compound (Units in ug/L)	Water stuarty	MW-21D 05/10/24	DUP051024 05/10/24 MW-21D Duplicate	MW-21S 05/09/24	MW-22D 05/09/24	MW-22S 05/09/24	MW-23D 05/08/24	MW-23S 05/08/24	MW-24D 05/07/24	MW-24S 05/07/24
Hexachlorobutadiene	0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Hexachlorocyclopentadiene	5	<10	<10	<10	<10	<10	<10	<10	<10	<10
Hexachloroethane	5	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Indeno(1,2,3-cd)pyrene	0.002	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Isophorone	50	<10	<10	<10	<10	<10	<10	<10	<10	<10
Naphthalene	10	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Nitrobenzene	0.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
N-Nitrosodi-n-propylamine		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
N-Nitrosodiphenylamine	50	<10	<10	<10	<10	<10	<10	<10	<10	<10
Pentachlorophenol	1 ^a	<20 J	<20 J	<20 J	<20	<20	<20 J	<20 J	<20	<20
Phenanthrene	50	<10	<10	<10	<10	<10	<10	<10	<10	<10
Phenol	1 ^a	<10	<10	<10	<10	<10	<10	<10	<10	<10
Pyrene	50	<10	<10	<10	<10	<10	<10	<10	<10	<10

Notes:

^a Applies to the sum of these substances.

Acronyms and Abbreviations:

- J = estimated value
- -- = not available
- ND = non-detectable

NYSDEC = New York State Department of Environmental Conservation

SVOCs = semi-volatile organic compounds

TOGS = Technical and Operational Guidance Series

ug/L = micrograms per liter

Table 4Concentrations of VOCs in Quality Assurance/Quality Control SamplesFormer Dangman Park MGP SiteBrooklyn, New York

Sample ID: Sample Date:	EB050724 05/07/24	EB050824 05/08/24	EB050924 05/09/24	EB051024 05/10/24	TB050724 05/07/24	TB050824 05/08/24	TB050924 05/09/24	TB051024 05/10/24
Compound	05/07/24	05/06/24	05/09/24	05/10/24	05/07/24	05/06/24	05/09/24	05/10/24
(Units in ug/L)								
1,1,1-Trichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.1-Dichloroethane	<1.0	<1.0 J	<1.0	<1.0	<1.0	<1.0 J	<1.0	<1.0
1,1-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trimethylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromo-3-Chloropropane	<1.0	<1.0	<1.0 J	<1.0 J	<1.0	<1.0	<1.0 J	<1.0 J
1,2-Dibromoethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-Trimethylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dioxane	<50	<50	<50	<50	<50	<50	<50	<50
2-Butanone (MEK)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2-Hexanone	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
4-Methyl-2-pentanone (MIBK)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Acetone	8.7	<5.0	<5.0	5.5	<5.0	<5.0	<5.0	<5.0
Benzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromoform	<1.0	<1.0	<1.0	<1.0 J	<1.0	<1.0	<1.0	<1.0 J
Bromomethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Carbon disulfide	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Carbon tetrachloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

See notes on last page.

Table 4Concentrations of VOCs in Quality Assurance/Quality Control SamplesFormer Dangman Park MGP SiteBrooklyn, New York

Sample ID: Sample Date:	EB050724 05/07/24	EB050824 05/08/24	EB050924 05/09/24	EB051024 05/10/24	TB050724 05/07/24	TB050824 05/08/24	TB050924 05/09/24	TB051024 05/10/24
Compound	03/01/24	03/00/24	03/03/24	03/10/24	03/01/24	03/00/24	03/03/24	03/10/24
(Units in ug/L)								
Chloromethane	<1.0	<1.0 J	<1.0	<1.0	<1.0	<1.0 J	<1.0	<1.0
cis-1,2-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-Dichloropropene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Cyclohexane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dichlorodifluoromethane	<1.0	<1.0	<1.0	<1.0 J	<1.0	<1.0	<1.0	<1.0 J
Ethylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Isopropylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methyl acetate	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methylcyclohexane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methylene Chloride	<1.0	0.98 J	0.92 J	<1.0	<1.0	<1.0	<1.0	<1.0
n-Butylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
N-Propylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
sec-Butylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Styrene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
tert-Butylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-Dichloropropene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Xylenes, Total	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0

Notes:

Acronyms and Abbreviations:

J = estimated value

ug/L = micrograms per liter

VOCs = volatile organic compounds

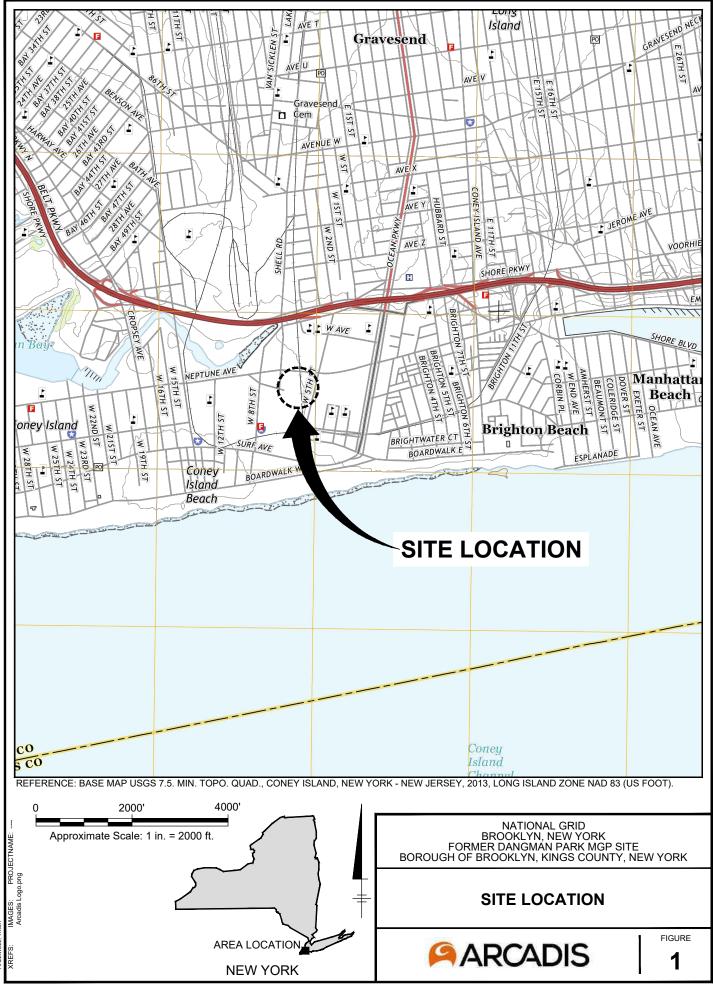
1. Bold indicates detection above laboratory Method Detection Limit.

Table 5 Concentrations of SVOCs in Quality Assurance/Quality Control Samples Former Dangman Park MGP Site Brooklyn, New York

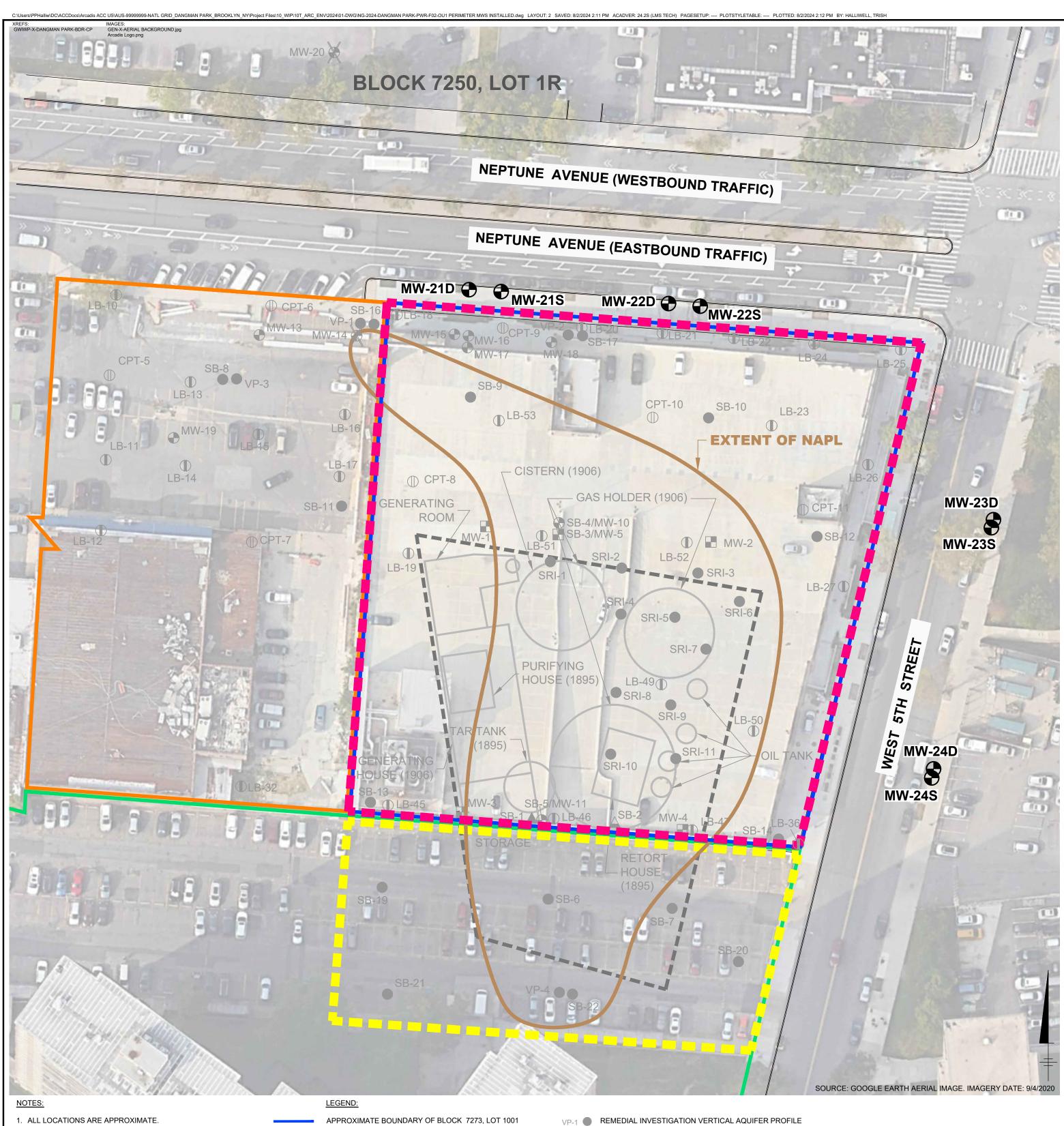
Sample ID:	EB050724	EB050824	EB050924	EB051024
Sample Date:	05/07/24	05/08/24	05/09/24	05/10/24
Compound				
(Units in ug/L)				
1,1'-Biphenyl	<10	<10	<10	<10
2,2'-oxybis(1-chloropropane)	<10	<10	<10	<10
2,4,5-Trichlorophenol	<10	<10	<10	<10
2,4,6-Trichlorophenol	<10	<10	<10	<10
2,4-Dichlorophenol	<10	<10	<10	<10
2,4-Dimethylphenol	<10	<10	<10	<10
2,4-Dinitrophenol	<40	<40 J	<40	<40 J
2,4-Dinitrotoluene	<10	<10 J	<10	<10 J
2,6-Dinitrotoluene	<2.0	<2.0 J	<2.0	<2.0 J
2-Chloronaphthalene	<10	<10	<10	<10
2-Chlorophenol	<10	<10	<10	<10
2-Methylnaphthalene	<10	<10	<10	<10
2-Methylphenol	<10	<10	<10	<10
2-Nitroaniline	<10	<10	<10	<10
2-Nitrophenol	<10	<10	<10	<10
3 & 4 Methylphenol	<10	<10	<10	<10
3,3'-Dichlorobenzidine	<10	<10	<10	<10
3-Nitroaniline	<10	<10 J	<10	<10 J
4,6-Dinitro-2-methylphenol	<20	<20 J	<20	<20 J
4-Bromophenyl phenyl ether	<10	<10	<10	<10
4-Chloro-3-methylphenol	<10	<10	<10	<10
4-Chloroaniline	<10	<10 J	<10 J	<10 J
4-Chlorophenyl phenyl ether	<10	<10	<10	<10
4-Nitroaniline	<10 J	<10 J	<10	<10 J
4-Nitrophenol	<20	<20	<20	<20
Acenaphthene	<10	<10	<10	<10
Acenaphthylene	<10	<10	<10	<10
Acetophenone	<10	<10	<10	<10
Anthracene	<10	<10	<10	<10
Atrazine	<2.0	<2.0	<2.0	<2.0
Benzaldehyde	<10	<10	<10	<10
Benzo(a)anthracene	<1.0	<1.0	<1.0	<1.0
Benzo(a)pyrene	<1.0	<1.0	<1.0	<1.0
Benzo(b)fluoranthene	<1.0	<2.0	<2.0	<1.0
Benzo(g,h,i)perylene				
	<10	<10	<10	<10
Benzo(k)fluoranthene	<1.0	<1.0	<1.0	<1.0
Bis(2-chloroethoxy)methane	<10	<10	<10	<10
Bis(2-chloroethyl)ether	<1.0	<1.0	<1.0	<1.0
Bis(2-ethylhexyl)phthalate	<2.0	<2.0	<2.0	<2.0
Butyl benzyl phthalate	<10	<10	<10	<10
Caprolactam	<10 J	<10 J	<10 J	<10 J
Carbazole	<10	<10	<10	<10
Chrysene	<2.0	<2.0	<2.0	<2.0

See notes on last page.

Table 5 Concentrations of SVOCs in Quality Assurance/Quality Control Samples Former Dangman Park MGP Site Brooklyn, New York

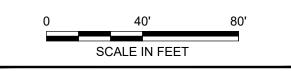

Sample ID: Sample Date:	EB050724 05/07/24	EB050824 05/08/24	EB050924 05/09/24	EB051024 05/10/24
Compound				
(Units in ug/L)				
Dibenz(a,h)anthracene	<1.0	<1.0	<1.0	<1.0
Dibenzofuran	<10	<10	<10	<10
Diethyl phthalate	<10	<10	<10	<10
Dimethyl phthalate	<10	<10	<10	<10
Di-n-butyl phthalate	<10	<10	<10	<10
Di-n-octyl phthalate	<10	<10	<10	<10
Fluoranthene	<10	<10	<10	<10
Fluorene	<10	<10	<10	<10
Hexachlorobenzene	<1.0	<1.0	<1.0	<1.0
Hexachlorobutadiene	<1.0	<1.0	<1.0	<1.0
Hexachlorocyclopentadiene	<10	<10	<10	<10
Hexachloroethane	<2.0	<2.0	<2.0	<2.0
Indeno(1,2,3-cd)pyrene	<2.0	<2.0	<2.0	<2.0
Isophorone	<10	<10	<10	<10
Naphthalene	<2.0	<2.0	<2.0	<2.0
Nitrobenzene	<1.0	<1.0	<1.0	<1.0
N-Nitrosodi-n-propylamine	<1.0	<1.0	<1.0	<1.0
N-Nitrosodiphenylamine	<10	<10	<10	<10
Pentachlorophenol	<20	<20 J	<20	<20 J
Phenanthrene	<10	<10	<10	<10
Phenol	<10	<10	<10	<10
Pyrene	<10	<10	<10	<10

Acronyms and Abbreviations:


J = estimated value

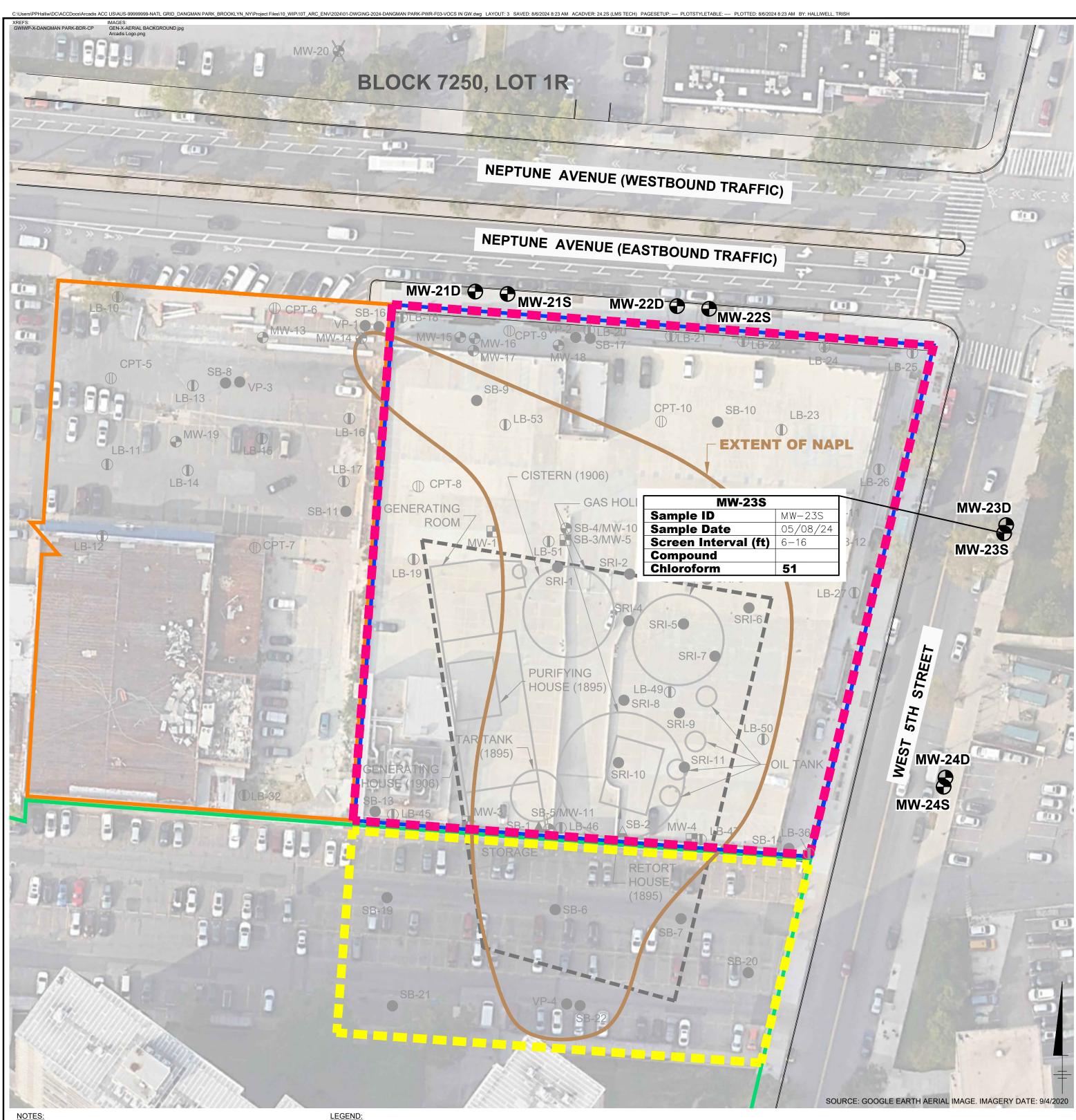
SVOCs = semi-volatile organic compounds ug/L = micrograms per liter

Figures


μ PAGESETUP: ---- PLOTSTYLETABLE: PLTFULLCTB PLOTTED: 8/2/2024 2:17 PM SAVED: 8/2/2024 2:16 PM ACADVER: 24.2S (LMS TECH) CUSIDERSIPPHAIMDCACCDocoMetadis ACC USIAUS 9999999AATL GRID_DANGMAN PARY_BROOKLYN_NYProject FlestiQ_WIPtiOT_ARC_ENV202401-DWGING-2024-DANGMAN PARK-PWR-F01-LOCATION MAP-dwg_LAYOUT: 1

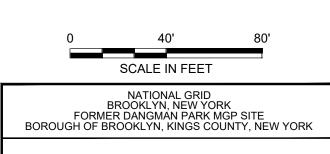
- 2. THE EXTENT OF NAPL IS BASED ON THE OBSERVATION OF NAPL IN THE SOIL BORINGS DURING THE SITE CHARACTERIZATION AND REMEDIAL INVESTIGATION. STAINED SOIL OR A SHEEN WERE NOT INCLUDED IN THE MAPPING OF THE EXTENT OF NAPL. THE EXTENT OF NAPL WAS CORROBORATED BY THE SUBSEQUENT SUPPLEMENTAL REMEDIAL INVESTIGATION AND PROPERTY OWNER GEOTECHNICAL INVESTIGATION SOIL BORINGS. MORE THAN 50% OF THE 90 BORINGS DRILLED IN ASSOCIATION WITH THE SITE WERE INSTALLED SUBSEQUENT TO THE REMEDIAL INVESTIGATION.
- 3. FKA: FORMERLY KNOWN AS
- 4. MGP: MANUFACTURED GAS PLANT
- 5. NAPL: NON-AQUEOUS PHASE LIQUID

- APPROXIMATE BOUNDARY OF BLOCK 7273, LOT 1001 (FKA LOT 1R)
- APPROXIMATE BOUNDARY OF BLOCK 7273, LOT 1002 (FKA LOT 1R)
- APPROXIMATE BOUNDARY OF BLOCK 7273, LOT 25
- APPROXIMATE FORMER MGP SITE BOUNDARY
 - FORMER MGP FEATURE (1895 AND/OR 1906 SANBORN FIRE INSURANCE MAPS); SOME LOCATIONS ADJUSTED BASED ON FIELD OBSERVATIONS OF POTENTIAL GAS HOLDER WALL DURING THE SUPPLEMENTAL REMEDIAL INVESTIGATION
 - EXTENT OF NAPL (SEE NOTE 2)
- APPROXIMATE BOUNDARY OF OU 1
 - APPROXIMATE BOUNDARY OF OU 2
- SB-1 SITE CHARACTERIZATION SOIL BORING LOCATION (ARCADIS, 2009)
- SB-2 A SITE CHARACTERIZATION SOIL BORING/GEOPROBE GROUNDWATER SAMPLING LOCATION (ARCADIS, 2009)
- MW-1 DECOMMISSIONED SITE CHARACTERIZATION INVESTIGATION MONITORING WELL LOCATION (ARCADIS, 2016)


- VP-1 REMEDIAL INVESTIGATION VERTICAL AQUIFER PROFILE TEMPORARY MONITORING WELL LOCATION (ARCADIS, 2012)
- SRI-10 REMEDIAL INVESTIGATION/SUPPLEMENTAL REMEDIAL INVESTIGATION SOIL BORING LOCATION (ARCADIS, 2011, 2012, AND 2015)
- LB-10 DROPERTY OWNER DRILLED BORING (LANGAN, 2015)
- MW-18 DECOMISSIONED REMEDIAL INVESTIGATION MONITORING WELL LOCATION (ARCADIS, 2016)
- MW-14 DECOMMISSIONED REMEDIAL INVESTIGATION MONITORING WELL LOCATION (ARCADIS, 2022)
- MW-24S OU 1 PERIMETER MONITORING WELL LOCATION (ARCADIS, 2024)

NATIONAL GRID BROOKLYN, NEW YORK FORMER DANGMAN PARK MGP SITE BOROUGH OF BROOKLYN, KINGS COUNTY, NEW YORK

OU 1 PERIMETER MONITORING WELL LOCATIONS



- 1. ALL LOCATIONS ARE APPROXIMATE.
- 2. THE EXTENT OF NAPL IS BASED ON THE OBSERVATION OF NAPL IN THE SOIL BORINGS DURING THE SITE CHARACTERIZATION AND REMEDIAL INVESTIGATION. STAINED SOIL OR A SHEEN WERE NOT INCLUDED IN THE MAPPING OF THE EXTENT OF NAPL. THE EXTENT OF NAPL WAS CORROBORATED BY THE SUBSEQUENT SUPPLEMENTAL REMEDIAL INVESTIGATION AND PROPERTY OWNER GEOTECHNICAL INVESTIGATION SOIL BORINGS. MORE THAN 50% OF THE 90 BORINGS DRILLED IN ASSOCIATION WITH THE SITE WERE INSTALLED SUBSEQUENT TO THE REMEDIAL INVESTIGATION.
- 3. FKA: FORMERLY KNOWN AS
- 4. MGP: MANUFACTURED GAS PLANT
- 5. NAPL: NON-AQUEOUS PHASE LIQUID
- 6. SGVs: AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES
- 7. CONCENTRATION PROVIDED IN MICROGRAMS PER LITER (µg/L).
- 8. THERE WERE NO OTHER EXCEEDANCES OF SGVs IN THE GROUNDWATER SAMPLES.

- LEGEND:
- APPROXIMATE BOUNDARY OF BLOCK 7273, LOT 1001 (FKA LOT 1R)
- APPROXIMATE BOUNDARY OF BLOCK 7273, LOT 1002 (FKA LOT 1R)
- APPROXIMATE BOUNDARY OF BLOCK 7273, LOT 25
- APPROXIMATE FORMER MGP SITE BOUNDARY
 - FORMER MGP FEATURE (1895 AND/OR 1906 SANBORN FIRE INSURANCE MAPS); SOME LOCATIONS ADJUSTED BASED ON FIELD OBSERVATIONS OF POTENTIAL GAS HOLDER WALL DURING THE SUPPLEMENTAL REMEDIAL INVESTIGATION
- EXTENT OF NAPL (SEE NOTE 2)
- APPROXIMATE BOUNDARY OF OU 1
 - APPROXIMATE BOUNDARY OF OU 2
- SITE CHARACTERIZATION SOIL BORING LOCATION SB-1 (ARCADIS, 2009)
- SB-2 🛕 SITE CHARACTERIZATION SOIL BORING/GEOPROBE GROUNDWATER SAMPLING LOCATION (ARCADIS, 2009)
- DECOMMISSIONED SITE CHARACTERIZATION INVESTIGATION MW-1 MONITORING WELL LOCATION (ARCADIS, 2016)

- REMEDIAL INVESTIGATION VERTICAL AQUIFER PROFILE VP-1 TEMPORARY MONITORING WELL LOCATION (ARCADIS, 2012)
- REMEDIAL INVESTIGATION/SUPPLEMENTAL REMEDIAL SRI-10 🔵 INVESTIGATION SOIL BORING LOCATION (ARCADIS, 2011, 2012, AND 2015)
- LB-10 DROPERTY OWNER DRILLED BORING (LANGAN, 2015)
- DECOMISSIONED REMEDIAL INVESTIGATION MW-18 MONITORING WELL LOCATION (ARCADIS, 2016)
- MW-14 DECOMMISSIONED REMEDIAL INVESTIGATION MONITORING WELL LOCATION (ARCADIS, 2022)
- MW-24S OU 1 PERIMETER MONITORING WELL LOCATION (ARCADIS, 2024)

VOLATILE ORGANIC COMPOUND IN GROUNDWATER EXCEEDING SGVs

FIGURE

3

NYSDEC's April 3, 2023 Letter Re: Groundwater Well Installations

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Remedial Bureau C 625 Broadway, 12th Floor, Albany, NY 12233-7014 P: (518) 402-9662 I F: (518) 402-9722 www.dec.ny.gov

Transmitted via email

April 3rd, 2023

Donald P. Campbell, PG National Grid 2 Hanson Place, 11th Floor Brooklyn, NY 11217 Donald.Campbell@nationalgrid.com

> Re: Groundwater Well Installations Dangman Park Former Manufactured Gas Plant (MGP) Site Site ID No. 224047 Brooklyn, New York

Dear Mr. Campbell,

The New York State Department of Environmental Conservation (Department) is writing to follow-up on our **March 30th** conversation regarding groundwater well installations at the Former Dangman Park MGP site. As discussed, the Department is requiring the installation of wells around the perimeter of OU-1 (Neptune Avenue, W. 5th Street) to monitor post-remediation conditions and ensure no off-site migration of contamination has occurred due to the site's redevelopment. This monitoring will be a requirement of the forthcoming Record of Decision for OU-1 of the site.

Please submit a brief workplan outlining a proposal for the groundwater well installations including an implementation schedule. Note that the well proposal must include screened intervals for a shallow and a deeper groundwater zone. I may be contacted at 518 (402)-9589 or john.miller@dec.ny.gov with any questions or comments.

Sincerely,

John B. mile

John B. Miller, P.E. Project Manager

ec: K. Thompson S. Lawrence O. Wolfe J. Phillips kiera.thompson@dec.ny.gov Stephen.Lawrence@health.ny.gov oliver.wolfe@dec.ny.gov Jessica.Phillips@nationalgrid.com

Department of Environmental Conservation

Soil Boring Logs

Boring/Well:	MW-	21D	Project/No.:	Former Dangman Pa	ark MGP Site/30	205663		Pag	e <u>1</u> of <u>2</u>
Site Location:	Brooklyn, NY				Drilling Started:		4/2/24	Drilling Completed:	4/3/24
Drilling Contra	ctor:	Aquifer Drill	ing & Testing	g, Inc.	Driller:	Jin	nmy McGill	Helper:	A. Grinaldi
Drilling Method	d:	Sonic			Drilling Fluid	Used:	None		
Length and Di of Coring Devi		5' x 4"			Sampling Int	terval:	Co	ontinuous	feet
Land Surface	Elev.:	10.32	feet	X Surveyed	Estimated		Datum:		NGVD 29
Total Depth D	rilled:	93	Feet	Hole Diameter: 6"	Type of Sam Coring Devic	•		Core B	arrel
Prepared By:	Kyle Barber				Hammer Weight:	N/A	pounds	Hammer Drop:	N/A inches
Sample/Core I	•								
(feet below lar	nd surface)	Core	PID						
From	То	Recovery	Reading			Sample/C	Core Descripti	on	
From 5	<u>То</u> 10	(feet) 1.5	(ppm) 0.0	5' - 5.5' - (GP) Dark gra					dense, moist, no odor
Ŭ			0.0	(10YR 4/1)		and grat	0., 000		
			0.0	5.5' - 6.5' - (SP) Brown	coarse SAND a	and mediu	m subangula	r gravel, loose, w	vet, no odor (7.5YR 5/3)
				6.5' - 10' - No Recovery	y				
10	15	2.5	0.0 0.0	10' - 12.5' - (SP) Browr (7.5YR 5/3)	o coarse SAND	and mediu	um to small su	ubangular gravel	, loose, wet, no odor
			0.0	12.5' - 15' - No Recove	ery				
15	20	3.5	0.0	15' - 18.5' - (SP) Browr	n coarse SAND	and mediu	um to small su	ubangular gravel	. loose. wet. no odor
			0.0	(7.5YR 5/3)				3 3	, ,
			0.0 0.0	18.5' - 20' - No Recove	ery				
20	25	0	-	20' - 25' - No Recovery	,				
25	30	4	0.0	25' - 29' - (SP) Brown o	coarse SAND ar	nd medium	n to small sub	angular gravel, l	oose, wet, no odor
			0.0 0.0	(7.5YR 5/3)					
			0.0 0.0	29' - 30' - No Recovery	1				
30	35	3.5	0.0	30' - 33.5' - (SP) Brown	o coarse SAND	and mediu	um to small su	ubangular gravel	, loose, wet, no odor
			0.0 0.0	(7.5YR 5/3) 33.5' - 35' - No Recove	۲\/				
35	40	1.5	0.0	35' - 36.5' - (SP) Brown	-	and mediu	im to small si	ibangular gravel	loose wet no odor
00	40	1.0	0.0	(7.5YR 5/3)				isangular graver	
				36.5' - 40' - No Recove	ery				
40	45	0	-	40' - 45' - No Recovery	,				
45	50	0	-	45' - 50' - No Recovery	,				
50	55	5	0.0	50' - 55' - (SP) Brown o	coarse SAND ar	nd medium	n to small sub	angular gravel, l	oose, wet, no odor
			0.0 0.0	(7.5YR 5/3)					
			0.0						
			0.0						
55	60	5	0.0 0.0	55' - 60' - (SP) Brown c (7.5YR 5/3)	coarse SAND ar	nd medium	n to small sub	angular gravel, l	oose, wet, no odor
			0.0	(7.51K 5/5)					
			0.0 0.0						
60	65	1.5	0.0	60' - 61.5' - (SP) Browr	n coarse SAND	and mediu	um to small su	ubangular gravel	, loose, wet, no odor
			0.0	(7.5YR 5/3)					· · ·
				61.5' - 65' - No Recove	ery				
65	70	3	0.0 0.0	65' - 68' - (SP) Brown r	medium SAND,	trace coar	se and fine s	and, loose, mois	t, no odor (7.5YR 5/4)
			0.0	68' - 70' - No Recovery	,				
			0.0	So ro - No Recovery					

Boring/Well:	MW-2	21D	Project/No.:	Former Dangman Park MGP Site/30205663	Page 2 of 2				
Prepared By:	Kyle Barber		_						
Sample/Core [Depth								
(feet below lan	d surface)	Core	PID						
		Recovery	Reading						
From	То	(feet)	(ppm)	Sample/Core Description					
70	75	4	0.0	70' - 74' - (SP) Brown medium SAND, trace coarse and fine sand, loose, moist, no odor (7.5'					
			0.0						
			0.0						
			0.0	74' - 75' - No Recovery					
			0.0						
75	80	4	0.0	75' - 79' - (SP) Brown medium SAND, trace coarse and fine sand, loo	se, moist, no odor (7.5YR 5/4)				
			0.0						
			0.0	79' - 80' - No Recovery					
			0.0 0.0						
80	85	4.5	0.0	80' - 84.5' - (SP) Brown medium SAND, trace coarse and fine sand, lo	oose moist no odor (7 5YR 5/4)				
00	00	4.0	0.0						
			0.0						
			0.0	84.5' - 85' - No Recovery					
			0.0						
85	90	3	0.0	85' - 88' - (SP) Brown medium SAND, trace coarse and fine sand, loo	se, moist, no odor (7.5YR 5/4)				
			0.0						
			0.0						
				88' - 90' - No Recovery					
90	93	1.5	0.0	90' - 91.5' - (SP) Brown medium SAND, trace coarse and fine sand, lo	oose moist no odor (7 5YR 5/4)				
50	00		0.0						
			0.0						
				91.5' - 93' - No Recovery					

Boring/Well:	MW-	21S	Project/No.:	Former Dangman Par	k MGP Site/302	205663		Pag	e <u>1</u>	of <u>1</u>
Site Location:	Brooklyn, NY				Drilling Started:		4/1/24	Drilling Completed:	4/1	/24
Drilling Contra	ctor:	Aquifer Dril	ling & Testing	g, Inc.	Driller:	Arti	e LaRocca	Helper:	Jimmy	McGill
Drilling Method	d:	Sonic			Drilling Fluid	Used:	None			
Length and Dia of Coring Devi		5' x 4"			Sampling Inte	erval:	Cor	ntinuous	feet	
Land Surface	Elev.:	10.32	feet	XSurveyed	Estimated Datum:			NGVD 29		
Total Depth D	illed:	19	Feet	Hole Diameter: 6"	Type of Sam Coring Devic	•		Core B	arrel	
Prepared By:	Kyle Barber				Hammer Weight:	N/A	pounds	Hammer Drop:	N/A	inches
Sample/Core I (feet below lan From	•	Core Recovery (feet)	PID Reading (ppm)			Sample/C	Core Descriptio	n		
5	10	2.5	2.0 0.5 0.5	5' - 5.75' - (GP) Dark gra loose, moist, no odor (7.	ay coarse SAN	•			/el, trace med	ium sand,
				5.75' - 7.5' - (SP) Brown odor (7.5YR 4/4)	coarse SAND,	some me	edium sand, ar	nd small subang	gular gravel, n	noist, no
				7.5' - 10' - No Recovery						
10	15	4.5	0.0 0.0 0.0	10' - 14.5' - (SP) Brown odor (7.5YR 4/4)		some me	dium sand and	d small subangı	ılar gravel, mo	pist, no
			0.0 0.0	14.5' - 15' - No Recovery	y					
15	19	3	0.0 0.0 0.0	15' - 18' - (SP) Brown coarse SAND, some medium sand and small subangular gravel, moist, no odor (7.5YR 4/4)						
1			0.0	18' - 19' - No Recovery						

Boring/Well:	MW-	22D	Project/No.:	Former Dangman Par	k MGP Site/3	0205663		Page	e <u>1</u> of	2
Site Location:	Brooklyn, NY				Drilling Started:	;	3/27/24	Drilling Completed:	3/28/	/24
Drilling Contra	ctor:	Aquifer Dril	ling & Testing	g, Inc.	Driller:	Arti	e LaRocca	Helper:	A. Grir	naldi
Drilling Metho	d:	Sonic			Drilling Flui	d Used:	None			
Length and Di of Coring Dev		5' x 4"			Sampling Ir	nterval:	Co	ntinuous	feet	
Land Surface		9.89	feet	X Surveyed	Estimated Datum: NGVD 29					
					Type of Sa	mple/				
Total Depth D	rilled:	93	Feet	Hole Diameter: 6"	Coring Dev	•		Core B	arrel	
Dron and Dru	Kula Darkar				Hammer	N1/A		Hammer	N1/A	in choo
Prepared By: Sample/Core					Weight:	N/A	_pounds	Drop:	N/A	inches
(feet below lar	•	Core	PID							
F rom	т	Recovery	Reading			Sample/C	ara Descripti			
From 5	То 10	(feet) 3	(ppm) 0.0	5' - 5.5' - (GP) Dark gray	/ coarse SAN		ore Descriptio		I, trace mediur	m sand.
			0.0 0.0	loose, wet, no odor (7.5)			5	5	,	
				5.5' - 8' - (SP) Strong broad and fine sand, loose, we			e medium to la	arge subangular	gravel, trace n	nedium
				8' - 10' - No Recovery						
10	15	4	0.0	10' - 14' - (SP) Brown co	barse SAND, t	race mediu	um sand and s	small subangular	gravel, loose,	moist, no
			0.0 0.0	odor (7.5YR 5/4)						
			0.0 0.0	14' - 15' - No Recovery						
15	20	4.5	0.0	15' - 19.5' - (SP) Brown no odor (7.5YR 5/4)	coarse SAND	, trace med	dium sand and	d small subangu	ar gravel, loos	e, moist,
			0.0	· · · · · ·						
			0.0 0.0	19.5' - 20' - No Recover	y					
20	25	4	0.0 0.0	20' - 24' - (SP) Brown co odor (7.5YR 5/4)	barse SAND, t	race mediu	um sand and s	small subangular	gravel, loose,	moist, no
			0.0	24' - 25' - No Recovery						
			0.0							
25	30	4	0.0 0.0	25' - 29' - (SP) Brown co odor (7.5YR 5/4)	barse SAND, t	race mediu	um sand and s	small subangulai	gravel, loose,	moist, no
			0.0 0.0	29' - 30' - No Recovery						
	05		0.0			4				
30	35	5	0.0 0.0	30' - 33.5' - (SP) Brown no odor (7.5YR 5/4)	coarse SAND	, trace med	aium sand and	a small subangu	ar gravel, loos	e, moist,
			0.0 0.0	33.5' - 35' - (SP) Brown	medium SAN	D, some fir	ne sand and s	ilt, semi-dense, I	moist, no odor	(7.5YR
35	40	4	0.0	5/4) 35' - 39' - (SP) Brown m	edium SAND	some fine	sand and silt	semi-dense m	oist no odor (7	7 5VR 5/4)
			0.0				bund und bin,			.011(0,1)
			0.0 0.0	39' - 40' - No Recovery						
40	45	5	0.0	40' - 45' - (SP) Brown m	edium SAND,	some fine	sand and silt,	semi-dense, m	oist, no odor (7	7.5YR 5/4)
			0.0							
			0.0 0.0							
45	50	0	0.0	45' - 50' - No Recovery						
50	55	4	0.0	50' - 54' - (SP) Brown m	edium SAND	some fine	sand and silt	semi-dense m	oist, no odor (7	7.5YR 5/4)
			0.4		Galant GAND,		Sand and Sill,	50m-06n36, m	5.50, 10 0001 (7	.011(0/4)
			0.6 0.7	54' - 55' - No Recovery						
			0.5							

Boring/Well:	MW-2	22D	Project/No.:	Former Dangman Park MGP Site/30205663	Page	2	of _	2
Prepared By:	Kyle Barber		-					
Sample/Core I	Depth							
(feet below lar	•	Core	PID					
(,	Recovery	Reading					
From	То	(feet)	(ppm)	Sample/Core Description				
55	60	3.5	0.3	55' - 58.5' - (SP) Brown medium SAND, some fine sand and silt, semi-o	dense, mois	t, no c	dor (7.	5YR
			0.1	5/4)	,	,	,	
			0.2	, , , , , , , , , , , , , , , , , , ,				
			0.0	58.5' - 60' - No Recovery				
60	65	3	0.4	60' - 63' - (SP) Brown medium SAND, some fine sand and silt, semi-de	nse, moist,	no odo	or (7.5)	YR 5/4)
			0.8					
			1.1					
			0.7	63' - 65' - No Recovery				
65	70	2	0.4	65' - 67' - (SP) Brown medium SAND, some fine sand and silt, semi-de	nse moist	no odi	or (7.5)	(R 5/4)
00	10	2	0.4	to - or - (or) brown medium on to, some time sand and six, semi-de	1130, 1110131,	no out	JI (7.01	I (0, 4)
			0.2					
			0.2	67' - 70' - No Recovery				
70	75	4.5	0.0	70' - 74.5' - (SP) Brown medium SAND, some fine sand and silt, semi-	dense, mois	t, no o	dor (7.	5YR
			0.0	5/4)				
			0.0					
			0.0	74.5' - 75' - No Recovery				
75		-	0.0		<u> </u>	<u> </u>	(7.5)	
75	80	3	0.0	75' - 78' - (SP) Brown medium SAND, some fine sand and silt, semi-de	nse, moist,	no odo	or (7.5)	rR 5/4)
			0.0					
			0.0 0.0	78' - 80' - No Recovery				
			0.0					
80	85	5	0.0	80' - 85' - (SP) Brown medium SAND, some fine sand and silt, semi-de	nse, moist.	no od	or (7.5)	(R 5/4)
			0.0		,			
			0.0					
			0.0					
			0.0					
85	90	3	0.0	85' - 88' - (SP) Brown medium SAND, some fine sand and silt, semi-de	nse, moist,	no odo	or (7.5)	YR 5/4)
			0.0					
			0.0	001 - 001 - No Deservore				
			0.0	88' - 90' - No Recovery				

Boring/Well:	MW-	22S	Project/No.:	Former Dangman Par	k MGP Site/302	205663		Page	e <u> </u>	f <u>1</u>
Site Location:	Brooklyn, NY				Drilling Started:	:	3/27/24	Drilling Completed:	3/27	7/24
Drilling Contra	ctor:	Aquifer Dril	ling & Testing	g, Inc.	Driller:	Arti	e LaRocca	Helper:	A. Gr	inaldi
Drilling Method	d:	Sonic			Drilling Fluid	Used:	None			
Length and Dia of Coring Devi		5' x 4"			Sampling Inte	erval:	Cor	ntinuous	feet	
Land Surface	Elev.:	9.72	feet	X Surveyed	Estimated		Datum:		NGVD 29	
Total Depth D	rilled:	19	Feet	Hole Diameter: 6"	Type of Samp Coring Device			Core B	arrel	
Prepared By:	Kyle Barber				Hammer Weight:	N/A	pounds	Hammer Drop:	N/A	inches
Sample/Core [Depth									
(feet below lan	d surface)	Core	PID							
		Recovery	Reading							
From	То	(feet)	(ppm)		5	Sample/C	ore Descriptio	n		
5	10	5	0.0	5' - 6' - (SP) Brown coar	se SAND, some	small su	ubangular grav	el and subangu	ılar medium s	and, loose,
			0.0	moist, no odor (10YR 5/	4)			-		
			0.0		-					
			0.0	6' - 10' - (SP) Brown coa	arse SAND and	small sul	bangular grave	l, loose, wet, no	o odor (10YR	5/4)
			0.0							
10	15	5	0.0	10' - 15' - (SP) Brown co	arse SAND and	d small si	ubangular grav	el, loose, wet, r	no odor (10YF	R 5/4)
			0.0							
			0.0							
			0.0							
			0.0							
15	19	4	0.0	15' - 19' - (SP) Brown co	arse SAND and	d small si	ubangular grav	el, loose, wet, r	no odor (10YF	R 5/4)
			0.0							
			0.0							
			0.0							

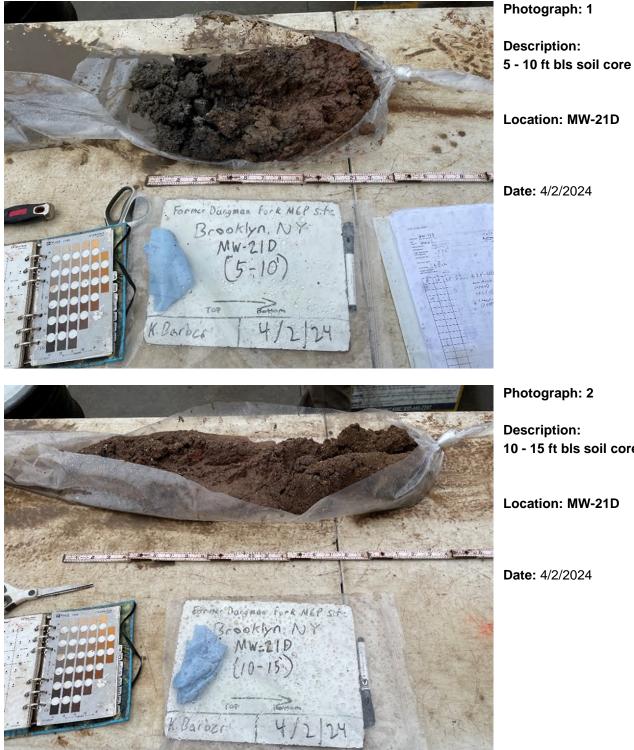
Boring/Well:	MW-	23D	Project/No.:	Former Dangman Par	k MGP Site/30	0205663		Pag	e 1 of 2
Site Location:	Brooklyn, NY				Drilling Started:	:	3/21/24	Drilling Completed:	3/22/24
Drilling Contra	ictor:	Aquifer Dril	ling & Testing	, Inc.	Driller:	Arti	e LaRocca	Helper:	A. Grinaldi
Drilling Metho	d:	Sonic			Drilling Fluid	Used:	None		
Length and Di of Coring Dev		5' x 4"			Sampling In	terval:	Co	ntinuous	feet
Land Surface	Elev.:	8.49	feet	X Surveyed	Estimated		Datum:		NGVD 29
Total Depth D	rilled:	93	Feet	Hole Diameter: 6"	Type of Sar Coring Devi	•		Core B	arrel
Prepared By:	Kyle Barber				Hammer Weight:	N/A	pounds	Hammer Drop:	N/A inches
Sample/Core	Depth						_		
(feet below lar	nd surface)	Core	PID						
F	τ.	Recovery	Reading						
From 5	То 10	(feet) 2.5	(ppm) 0.6	5' - 5.25' - (GP) Dark gra	avish brown co		ore Description		avel, loose, poorly
Ŭ		2.0	0.0	sorted, moist, no odor (1	•			n ousangalar gr	
			0.0			, trace sm	all subangula	gravel and med	dium sand, loose, poorly
				sorted, wet, no odor (10)	YR 4/4)				
				7.5' - 10' - No Recovery					
10	15	4	0.0 0.0 0.0	10' - 14' - (SP) Brown co sorted, moist, no odor (1		race small	subangular g	ravel and mediu	m sand, loose, poorly
			0.0	14' - 15' - No Recovery					
15	20	4.5	0.0	15' - 19.5' - (SP) Brown		trace sma	all subangular	gravel and med	ium sand, loose, poorly
			0.0 0.0	sorted, moist, no odor (1	0YR 4/4)				
			0.0	19.5' - 20' - No Recovery	ý				
20	25	3.5	0.0	20' - 23.5' - (SP) Brown	coarse SAND	trace sma	all subangular	gravel and med	ium sand, loose, poorly
			0.0 0.0	sorted, moist, no odor (1	0YR 4/4)				
				23.5' - 25' - No Recovery					
25	30	1	0.0 0.0	25' - 26' - (SP) Brown co sorted, moist, no odor (1		race small	subangular g	ravel and mediu	m sand, loose, poorly
				26' - 30' - No Recovery					
30	35	4.5	0.0 0.0	30' - 34.5' - (SP) Brown sorted, moist, no odor (1		trace sma	all subangular	gravel and med	ium sand, loose, poorly
			0.0 0.0	34.5' - 35' - No Recovery	y				
			0.0						
35	40	2.5	0.0 0.0 0.0	35' - 37.5' - (SP) Brown sorted, moist, no odor (1		trace sma	all subangular	gravel and med	ium sand, loose, poorly
			0.0	37.5' - 40' - No Recovery	y				
40	45	4	0.0	40' - 44' - (SP) Brown co		race small	subangular g	ravel and mediu	m sand, loose, poorly
			0.0 0.0	sorted, moist, no odor (1	UYR 4/4)				
			0.0						
				44' - 45' - No Recovery					
45	50	3	0.0 0.0 0.0	45' - 48' - (SP) Brown co sorted, moist, no odor (1		race small	subangular g	ravel and mediu	m sand, loose, poorly
			0.0	48' - 50' - No Recovery					
50	55	4	0.0 0.0	50' - 54' - (SP) Brown co sorted, moist, no odor (1		race small	subangular g	ravel and mediu	m sand, loose, poorly
			0.0 0.0	54' - 55' - No Recovery					

Boring/Well:	MW-	23D	Project/No.:	Former Dangman Park MGP Site/30205663 Page 2 of 2					
Prepared By:	Kyle Barber		_	PID Reading (ppm) Sample/Core Description 0.0 55' - 58.75' - (SP) Brown coarse SAND, trace small subangular gravel and medium sand, loos sorted, moist, no odor (10YR 4/4) 0.0 58.75' - 60' - No Recovery 0.0 60' - 62.25' - (SP) Brown coarse SAND, trace small subangular gravel and medium sand, loos sorted, moist, no odor (10YR 4/4) 62.25' - 65' - No Recovery 65' - 69.5' - (SP) Brown coarse SAND, trace small subangular gravel and medium sand, loose sorted, moist, no odor (10YR 4/4) 0.0 69.5' - 70' - No Recovery 0.0 69.5' - 75' - No Recovery 0.0 70' - 74.25' - (SP) Brown coarse SAND, trace small subangular gravel and medium sand, loose sorted, moist, no odor (10YR 4/4) 0.0 71' - 74.25' - 75' - No Recovery 0.0 75' - 80' - (SP) Brown coarse SAND, trace small subangular gravel and medium sand, loose, sorted, moist, no odor (10YR 4/4) 0.0 75' - 80' - (SP) Brown coarse SAND, trace small subangular gravel and medium sand, loose, sorted, moist, no odor (10YR 4/4) 0.0 80' - 82.5' - (SP) Brown coarse SAND, trace small subangular gravel and medium sand, loose sorted, moist, no odor (10YR 4/4) 0.0 85' - 89.5' - (SP) Brown coarse SAND, trace small subangular gravel and medium sand, loose sorted, moist, no odor (10YR 4/4) 0.0 85' - 89.5' - (SP) Brown coarse SAND, trace small subangular gravel and medium sand, loose sorted, mo					
Sample/Core l (feet below lar	•	Core							
_	-	Recovery	-						
From	To	(feet)							
55	60	3.75	0.0 0.0	sorted, moist, no odor (10YR 4/4)					
			0.0	S6.75 - 60 - NO RECOVERY					
60									
				62.25' - 65' - No Recovery					
65	70	4.5	0.0 0.0						
70	75	4.25	0.0 0.0						
75	80	5	0.0 0.0 0.0						
80	85	2.5	0.0 0.0						
				-					
85	90	4.5	0.0						
			0.0	89.5' - 90' - No Recovery					
90	93	2	0.0 0.0	90' - 92' - (SP) Brown coarse SAND, trace small subangular gravel and medium sand, loose, poorly sorted, moist, no odor (10YR 4/4)					
			0.0	92' - 93' - No Recovery					

Boring/Well:	MW-	23S	Project/No.:	Former Dangman Park MGP Site/30205663				Page 1 of 1			
Site Location:	Brooklyn, NY				Drilling Started:		3/25/24	Drilling Completed:	3/25/24		
Drilling Contra	ctor:	Aquifer Dril	ling & Testing	g, Inc.	Driller:	Artie LaRocca		Helper:	A. Grinaldi		
Drilling Method	d:	Sonic			Drilling Fluid	rilling Fluid Used: None					
Length and Dia of Coring Devi		5' x 4"			Sampling Inte	ampling Interval:		ntinuous	feet		
Land Surface Elev .:		8.49	feet	XSurveyed	Estimated		Datum:		NGVD 29		
Total Depth D	illed:	19	Feet	Hole Diameter: 6"	Type of Sample/ Coring Device:		Core B	arrel			
Prepared By:	Kyle Barber				Hammer Weight:	N/A	pounds	Hammer Drop:	N/A inches		
Sample/Core Depth (feet below land surface) Core PID Recovery Reading From To (feet) (ppm)						Sample/C	Core Descriptic	n			
5	10	4	0.0 0.0 0.0	5' - 5.5' - (GP) Grayish b moist, no odor (10YR 4/	prown coarse S 2)	AND and	medium suba	ngular gravel, k			
			0.0 0.0	5.5' - 9' - (SP) Brown coa loose, poorly sorted, wet 9' - 10' - No Recovery			subangular gra	avel and subang	gular medium sand,		
10	15	4	0.0 0.0 0.0 0.0 0.0	10' - 14' - (SP) Brown co	10' - 14' - (SP) Brown coarse SAND, trace small subangular gravel and subangular medium sand, loose, poorly sorted, wet, no odor (10YR 4/4)						
15	19	2.5	0.0 0.0 0.0	 15' - 17.5' - (SP) Brown coarse SAND, trace small subangular gravel and subangular medium sand, loose, poorly sorted, wet, no odor (10YR 4/4) 17.5' - 19' - No Recovery 							

Boring/Well:	MW-	24D	Project/No.:	Former Dangman Par	k MGP Site/3	0205663		Page	e of	2			
Site Location:	Brooklyn, NY				Drilling Started:		3/19/24	Drilling Completed:	3/20/24				
Drilling Contra	actor:	Aquifer Dril	ling & Testing	ı, Inc.	Driller:	Arti	e LaRocca	Helper:	A. Grinaldi				
Drilling Metho	d:	Sonic			Drilling Flui	d Used:	None						
Length and Di of Coring Dev		5' x 4"		Sampling Interval: Co				ontinuous feet					
Land Surface		9.17	feet	X Surveyed	Estimated		Datum:		– NGVD 29				
			-		Type of Sa	mple/							
Total Depth D	rilled:	93	Feet	Hole Diameter: 6"	Coring Dev	ice:		Core B	arrel				
Prepared By:	Kvle Barber				Hammer Weight:	N/A	pounds	Hammer Drop:	N/A inch	es			
Sample/Core								p					
(feet below lar	•	Core	PID										
From	То	Recovery (feet)	Reading (ppm)			Sample/(Core Description	מר					
5	10	3	0.2	5' - 5.25' - (GP) Dark gra	ayish brown c				, trace brick fragmer	nts			
			0.4 0.2	and medium to fine sand			•			!			
			0.3	5.25' - 8' - (SP) Brown ce loose, wet (7.5YR 4/4)	oarse Sand,	some med	num to fine sa	no ano smali sui	bangular gravel, sone	ea,			
				8' - 10' - No Recovery	8' - 10' - No Recovery								
10	15	4.75	0.0 0.0	10' - 14.75' - (SP) Brown sorted, loose, wet (7.5YI		D, some m	edium to fine	sand and small s	subangular gravel,				
			0.0 0.0	14.75' - 15' - No Recove									
			0.0		, y								
15	20	4.5	0.0 0.0	15' - 19.5' - (SP) Brown loose, wet (7.5YR 4/4)	coarse SAND	, some me	dium to fine s	and and small su	ubangular gravel, sor	rted,			
			0.0	19.5' - 20' - No Recovery									
			0.0 0.0	19.5 - 20 - NO RECOVER	у								
20	25	4	0.0 0.0	20' - 24' - (SP) Brown co loose, wet (7.5YR 4/4)	barse SAND, s	some medi	um to fine sar	nd and small sub	angular gravel, sorte	∍d,			
			0.0 0.0	24' - 25' - No Recovery									
			0.0										
25	30	4	0.0 0.0	25' - 29' - (SP) Brown co loose, wet (7.5YR 4/4)	barse SAND, s	some medi	um to fine sar	nd and small sub	angular gravel, sorte	؛d,			
			0.0 0.0	29' - 30' - No Recovery									
			0.0										
30	35	4.75	0.0 0.0	30' - 34.75' - (SP) Brown odor (7.5YR 4/4)	n medium SAI	ND, some (coarse and fin	e sand, sorted, s	semi-dense, moist, n	0			
			0.0 0.0	34.75' - 35' - No Recove	١٢٧								
			0.0		, y								
35	40	3	0.0 0.0	35' - 38' - (SP) Brown co	barse SAND, s	some fine s	sand, sorted, s	semi-dense, wet	no odor (7.5YR 4/4))			
			0.0	38' - 40' - No Recovery									
			0.0										
40	45	4	0.0 0.0	40' - 44' - (SP) Brown co	barse SAND, s	some fine s	sand, sorted, l	oose, moist, no o	odor (7.5YR 4/4)				
			0.0 0.0	44' - 45' - No Recovery.									
			0.0										
45	50	0	-	45' - 50' - No Recovery									
50	55	4	0.0 0.0	50' - 54' - (SP) Brown co	barse SAND, s	some fine s	sand, sorted, l	oose, moist, no	odor (7.5YR 4/4)				
			0.0	54' - 55' - No Recovery									
			0.0	-									

Boring/Well:	MW-	-24D	Project/No.:	Former Dangman Park MGP Site/30205663	Page	2	of _	2				
Prepared By:			-									
Sample/Core (feet below lar	•	Core Recovery	PID Reading									
From	То	(feet)	(ppm)	Sample/Core Description								
55	60	4.25	0.1 0.0 0.0 0.0 0.0 0.0	55' - 59.25' - (SP) Brown coarse SAND, some fine sand, sorted, loose, mo	oist, no c	odor (7.	.5YR 4,	(4)				
60	65	5	0.0 0.0 0.0 0.0 0.0	60' - 60.5' - (SP) Brown coarse SAND, some fine sand, sorted, loose, moi 60.5' - 65' - Brown medium SAND and fine SAND, some coarse sand and dense, moist, no odor (7.5YR 4/4)								
65	70	3.5	0.0 0.0 0.0 0.0	65' - 68.5' - Brown medium SAND and fine SAND, some coarse sand and silt, poorly sorted, semi- dense, moist, no odor (7.5YR 4/4) 68.5' - 70' - No Recovery								
70	75	2.25	0.0 0.0 0.0	70' - 72.25' - Brown medium SAND and fine SAND, some coarse sand an dense, moist, no odor (7.5YR 4/4) 72.25' - 75' - No Recovery	ıd silt, po	orly so	orted, so	əmi-				
75	80	4	0.0 0.0 0.0 0.0 0.0	75' - 79' - Brown medium SAND and fine SAND, some coarse sand and s dense, moist, no odor (7.5YR 4/4) 79' - 80' - No Recovery	ilt, poorly	/ sorted	d, semi	-				
80	85	2.5	0.0 0.0 0.0	80' - 82.5' - Brown medium SAND and fine SAND, some coarse sand and dense, moist, no odor (7.5YR 4/4) 82.5' - 85' - No Recovery	l silt, poo	rly sort	ted, sei	mi-				
85	90	4	0.0 0.0 0.0 0.0 0.0	85' - 89' - Brown medium SAND and fine SAND, some coarse sand and s dense, moist, no odor (7.5YR 4/4) 89' - 90' - No Recovery	ilt, poorly	/ sorted	d, semi	-				



Boring/Well:	MW-	·24S	Project/No.:	: Former Dangman Par	rk MGP Site/30	205663		Pag	ge1of1	1	
Site Location:	Brooklyn, NY				Drilling Started:		3/20/24	Drilling Completed:	3/20/24		
Drilling Contra	ctor:	Aquifer Dril	lling & Testing	g, Inc.	Driller:	Arti	ie LaRocca	Helper:	A. Grinaldi		
Drilling Method	d:	Sonic			Drilling Fluid	Used:	None				
Length and Dia of Coring Devi		5' x 4"			Sampling Inte	erval:	Co	ontinuous	feet		
Land Surface	Elev.:	9.15	feet	X Surveyed	Estimated Datum:			NGVD 29			
Total Depth Dr	rilled:	19	Feet	Hole Diameter: 6"	Type of Sam	•		Core B	Barrel		
Prepared By:	Kyle Barber				Hammer Weight:	N/A	pounds	Hammer Drop:	N/A inche	es	
Sample/Core Depth (feet below land surface) From To		Core Recovery (feet)	PID Reading (ppm)			Sample/(Core Descriptio	on			
5	10	5	0.0 0.0 0.0 0.0 0.0 0.0	5' - 6' - (GP) Dark grayis moist, no odor (10YR 4/ 6' - 10' - (SP) Brown coa wet, no odor (7.5YR 4/4	sh brown coarse /3) arse SAND, som	e SAND a	and large suba	angular gravel, lo		,	
10	15	4	0.0 0.0 0.0 0.0 0.0		10' - 14' - (SP) Brown coarse SAND, some medium sand and small subangular gravel, loose, sorte wet, no odor (7.5YR 4/4) 14' - 15' - No Recovery						
15	19	3.5	0.0 0.0 0.0 0.0	15' - 18.5' - (SP) Brown wet, no odor (7.5YR 4/4) 18.5' - 19' - No Recover	4)	some me	∋dium sand an	d small subangı	ular gravel, loose, sor	ted,	

Field Photograph Log

National Grid Former Dangman Park Manufactured Gas Plant Site Brooklyn, New York

Location: MW-21D

Date: 4/2/2024

Photograph: 2

Description: 10 - 15 ft bls soil core

Location: MW-21D

Date: 4/2/2024

National Grid Former Dangman Park Manufactured Gas Plant Site Brooklyn, New York

Photograph: 3

Description: 80 - 85 ft bls soil core

Location: MW-21D

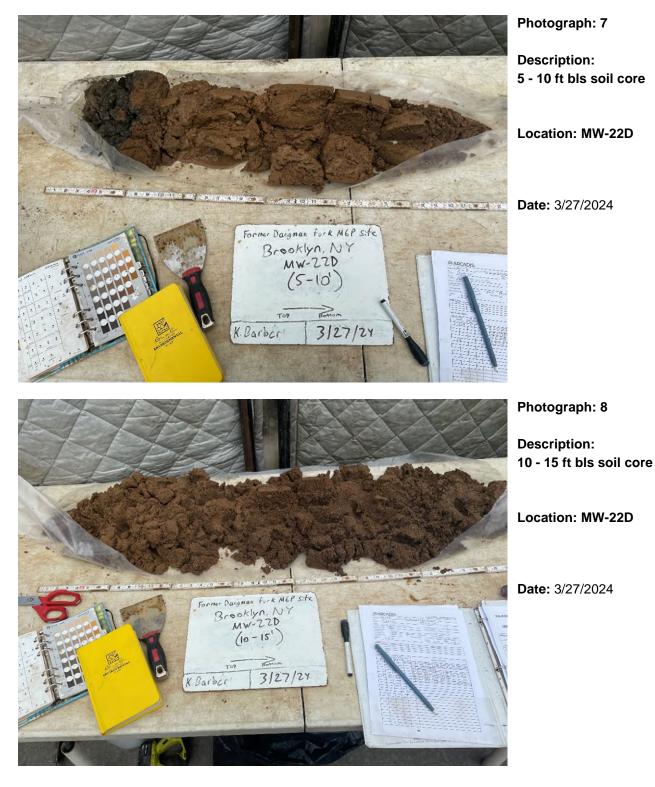
Date: 4/3/2024

Photograph: 4


Description: 85 - 90 ft bls soil core

Location: MW-21D

Date: 4/3/2024

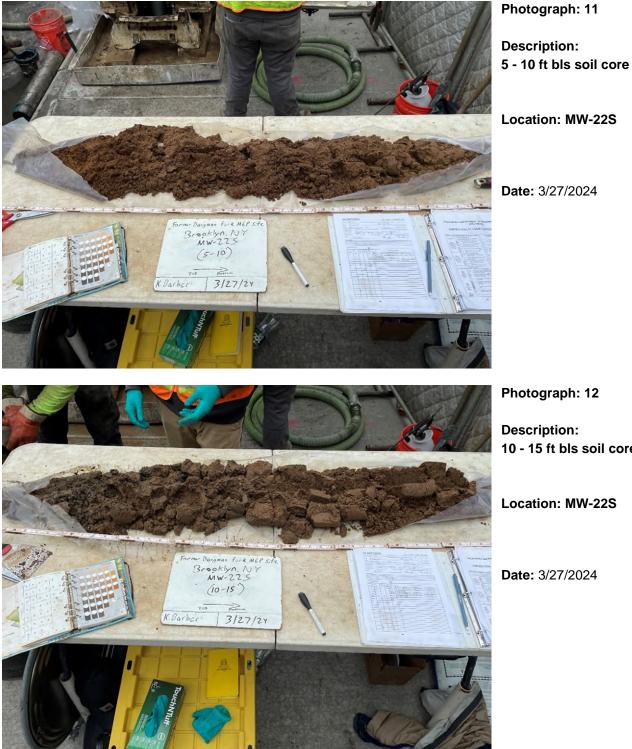

National Grid Former Dangman Park Manufactured Gas Plant Site Brooklyn, New York

10 - 15 ft bls soil core

Location: MW-21S

National Grid Former Dangman Park Manufactured Gas Plant Site Brooklyn, New York

Date: 3/28/2024


Photograph: 10

Description: 85 - 90 ft bls soil core

Location: MW-22D

Date: 3/28/2024

National Grid Former Dangman Park Manufactured Gas Plant Site Brooklyn, New York

10 - 15 ft bls soil core

Location: MW-22S

National Grid Former Dangman Park Manufactured Gas Plant Site Brooklyn, New York

Photograph: 13

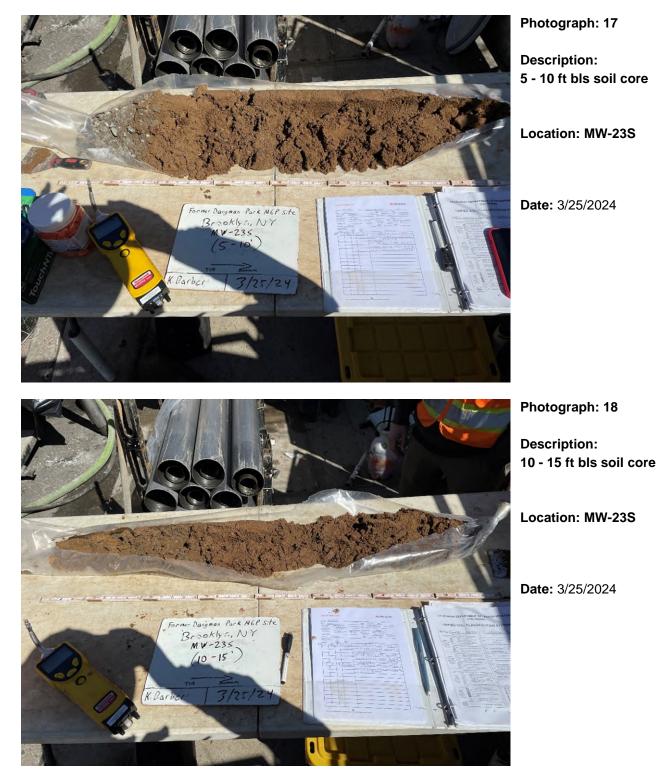
Description: 5 - 10 ft bls soil core

Location: MW-23D

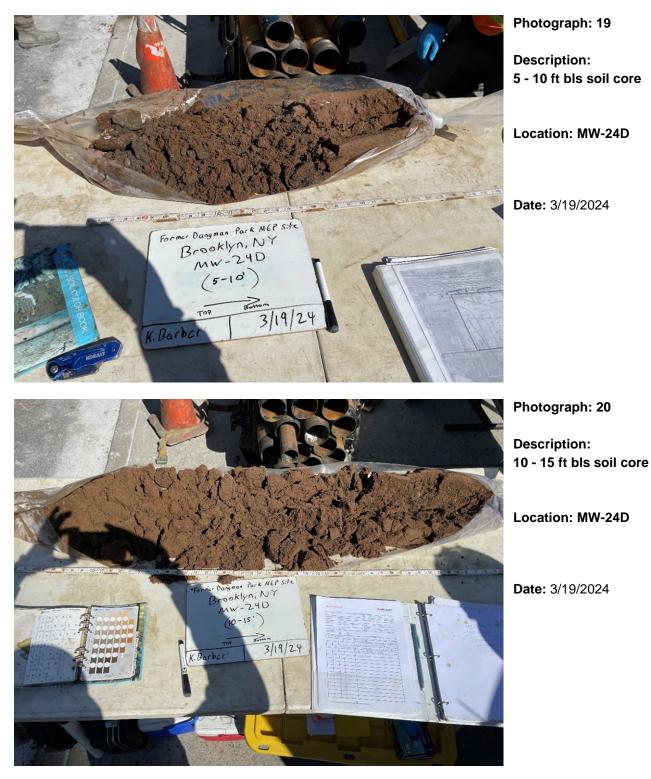
Date: 3/21/2024

Photograph: 14


Description: 10 - 15 ft bls soil core


Location: MW-23D

Date: 3/21/2024



National Grid Former Dangman Park Manufactured Gas Plant Site Brooklyn, New York

ARCADIS

Photograph: 21

Description: 85 - 90 ft bls soil core

Location: MW-24D

Date: 3/20/2024

Photograph: 22

Description: 5 - 10 ft bls soil core

Location: MW-24S

Date: 3/20/2024

National Grid Former Dangman Park Manufactured Gas Plant Site Brooklyn, New York

Photograph: 23

Description: 10 - 15 ft bls soil core

Location: MW-24S

Date: 3/20/2024

National Grid Former Dangman Park Manufactured Gas Plant Site Brooklyn, New York

Photograph: 24

Description: Work zone during drilling activities

Location: MW-24D

Date: 3/19/2024

Well Construction Logs

	Project Former Dangman Park MGP Site Well MW-21D
LAND SURFACE	Town/City Brooklyn
← <u>6</u> inch diameter drilled hole	County Kings State NY
	Permit No. Not Applicable
Well casing 2 inch diameter	Land Surface and Measuring Point Elevation: Datum: <u>NGVD 29</u>
2 inch diameter Sch 40 PVC	Land Surface 10.32 feet X Surveyed
	Measuring Point 9.87 feet Estimated
Grout Cement/Bentonite	Installation Date(s) 4/3/24
	Drilling Method Sonic
	Drilling Contractor Aquifer Drilling & Testing, Inc.
	Drilling Fluid None
<u>74</u> ft*	Development Technique(s) and Date(s)
Bentonite	Rump and Surga
Slurry	Pump and Surge
<u>76</u> ft*	4/5/24 and 4/9/24
●#00 Sand 78ft*	
80 ft*	Fluid Loss During Driling 0 gallons
	Static Depth to Water 6.19 feet below M.P.
Well Screen	Water Removed During Development
Sch 40 PVC 10 slot	Pumping Duration <u>1.08</u> hours
	Well Purpose Monitoring Well
Gravel Pack	
Sand Pack (# 1 Sand)	Remarks 3-foot PVC sump from 90 to 93 ft bls.
Formation Collapse	The annulus around the sump is sealed with bentonite from 90 to 93 feet.
	Development stopped on 4/5/24 due to earthquake. Resumed developme
90_ft*	on 4/9/24.
93 ft*	Prepared by Kyle Barber
Measuring Point is	

Top of Well Casing Unless Otherwise Noted.

	Project Former Dangman Park MGP Site Well MW-21S		
LAND SURFACE	Town/City Brooklyn		
• <u> </u>	County Kings State NY		
drilled hole	Permit No. Not Applicable		
✓ Well casing	Land Surface and Measuring Point Elevation: Datum: NGVD 29		
2 inch diameter Sch 40 PVC	Land Surface 10.32 feet X Surveyed		
	Measuring Point 9.87 feet Estimated		
Grout Cement/Bentonite	Installation Date(s) 4/1/24		
	Drilling Method Sonic		
	Drilling Contractor Aquifer Drilling & Testing, Inc.		
	Drilling Fluid None		
ft*	Development Technique(s) and Date(s)		
XPellets	Duran and Ourse		
Bentonite Slurry	Pump and Surge		
<u>3_</u> ft*	4/4/24		
●#00 Sand 4ft*			
6ft*	Fluid Loss During Driling 0 gallons		
	Static Depth to Water 6.42 feet below M.P.		
Well Screen	Water Removed During Development <u>30</u> gallons		
Sch 40 PVC 10 slot	Pumping Duration 0.25 hours		
	Well Purpose Monitoring Well		
Gravel Pack			
X Sand Pack (# 1 Sand)	Remarks <u>3-foot PVC sump from 16 to 19 ft bls.</u>		
Formation Collapse	The annulus around the sump is sealed with bentonite from 16 to 19 feet.		
19 ft*	Prepared by Kyle Barber		
Measuring Point is Top of Well Casing			

Unless Otherwise Noted.

	Project Former	Dangman Park MGP Site	Well MW-22D
LAND SURFACE	Town/City Brooklyn	I	
6inch diameter	County Kings	State	NY
drilled hole	Permit No. Not Appl	icable	
✓ Well casing	Land Surface and Me	easuring Point Elevation:	Datum: NGVD 29
2 inch diameter Sch 40 PVC	Land Surface	<u>9.89</u> feet X Su	urveyed
	Measuring Point	<u>9.47</u> feet Es	stimated
Grout Cement/Bentonite	Installation Date(s)	3/28/24	
Grout <u>Cement/Dentonite</u>	Drilling Method	Sonic	
	Drilling Contractor	Aquifer Drilling & Testing, I	nc.
	Drilling Fluid	None	
74ft*	Development Techni	que(s) and Date(s)	
Bentonite Slurry	Pump and Surge		
	4/4/24		
• #00 Sand			
<u></u>	Fluid Loss During Dri	iling <u>0</u> ga	lons
80 ft*	Static Depth to Wate	r <u>5.71</u> fee	t below M.P.
Well Screen 2 inch diameter	Water Removed Dur	ing Development 140	gallons
Sch 40 PVC 10 slot	Pumping Duration	1.16 hours	
	Well Purpose	Monitoring Well	
Gravel Pack			
X Sand Pack (# 1 Sand)	Remarks 3-foot P	/C sump from 90 to 93 ft bls.	
Formation Collapse	The annulus around	the sump is sealed with bent	onite from 90 to 93 feet.
90 ft*			
93 ft*	Prepared by	Kyle Barber	
Measuring Point is	r repared by		
Top of Well Casing			

Unless Otherwise Noted.

	Project Former Dangman Park MGP Site Well MW-22S	
LAND SURFACE	Town/City Brooklyn	
← <u>6</u> inch diameter drilled hole	County Kings State NY	
	Permit No. Not Applicable	
u vell casing	Land Surface and Measuring Point Elevation: Datum: NGVD 29	
2 inch diameter Sch 40 PVC	Land Surface 9.72 feet X Surveyed	
	Measuring Point 9.23 feet Estimated	
	Installation Date(s) 3/27/24	
Grout <u>Cement/Bentonite</u>	Drilling Method Sonic	
	Drilling Contractor Aquifer Drilling & Testing, Inc.	
	Drilling Fluid None	
$\begin{array}{c} 2 \\ ft^{*} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Development Technique(s) and Date(s) Pump and Surge 4/4/24 Fluid Loss During Driling 0 gallons Static Depth to Water 5.73 feet below M.P. Water Removed During Development 24 gallons	
Sch 40 PVC 10 slot	Pumping Duration 0.2 hours	
	Well Purpose Monitoring Well	
Gravel Pack		
X Sand Pack (# 1 Sand)	Remarks 3-foot PVC sump from 16 to 19 ft bls.	
Formation Collapse	The annulus around the sump is sealed with bentonite from 16 to 19 feet.	
16 ft*		
19 ft*	Prepared by Kyle Barber	
Measuring Point is	· · ·	

Unless Otherwise Noted.

	Project Former Dangman Park MGP Site Well MW-23D	
LAND SURFACE	Town/City Brooklyn	
← <u>6</u> inch diameter drilled hole	County Kings State NY	
	Permit No. Not Applicable	
→ Well casing	Land Surface and Measuring Point Elevation: Datum: NGVD 29	
2 inch diameter Sch 40 PVC	Land Surface 8.49 feet X Surveyed	
	Measuring Point 8.03 feet Estimated	
	Installation Date(s) 3/25/24	
 Grout <u>Cement/Bentonite</u> 	Drilling Method Sonic	
	Drilling Contractor Aquifer Drilling & Testing, Inc.	
	Drilling Fluid None	
$\begin{array}{c c} & & & & & & \\ \hline & & & & & \\ \hline & & & & \\ \hline & & & &$	Development Technique(s) and Date(s) Pump and Surge 4/8/24 Fluid Loss During Driling 0 gallons Static Depth to Water 4.45 feet below M.P. Water Removed During Development 140 gallons Pumping Duration 1.16 hours	
	Well Purpose Monitoring Well	
Gravel Pack		
X Sand Pack (# 1 Sand)	Remarks <u>3-foot PVC sump from 90 to 93 ft bls.</u>	
Formation Collapse	The annulus around the sump is sealed with bentonite from 90 to 93 feet.	
90 ft*		
93 ft*	Prepared by Kyle Barber	
Measuring Point is		

Unless Otherwise Noted.

	Project Former Dangman Park MGP Site Well MW-23S
LAND SURFACE	Town/City Brooklyn
← <u>6</u> inch diameter drilled hole	County Kings State NY
	Permit No. Not Applicable
→ Well casing	Land Surface and Measuring Point Elevation: Datum: NGVD 29
2 inch diameter Sch 40 PVC	Land Surface 8.49 feet X Surveyed
	Measuring Point 7.99 feet Estimated
 Grout <u>Cement/Bentonite</u> 	Installation Date(s) 3/25/24
	Drilling Method Sonic
	Drilling Contractor Aquifer Drilling & Testing, Inc.
	Drilling Fluid None
$\begin{array}{c} 2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Development Technique(s) and Date(s) Pump and Surge 4/8/24 Fluid Loss During Driling 0 gallons Static Depth to Water 4.69 feet below M.P. Water Removed During Development 27 gallons
2 inch diameter Sch 40 PVC 10 slot	Pumping Duration 0.25 hours
	Well Purpose Monitoring Well
Gravel Pack X Sand Pack (# 1 Sand) Formation Collapse	Remarks <u>3-foot PVC sump from 16 to 19 ft bls.</u> The annulus around the sump is sealed with bentonite from 16 to 19 feet.
16ft*	

Unless Otherwise Noted.

WELL CONSTRUCTION LOG

	Project Former Dangman Park MGP Site Well MW-24D
LAND SURFACE	Town/City Brooklyn
← <u>6</u> inch diameter	County Kings State NY
drilled hole	Permit No. Not Applicable
→ Well casing	Land Surface and Measuring Point Elevation: Datum: NGVD 29
2 inch diameter Sch 40 PVC	Land Surface 9.17 feet X Surveyed
	Measuring Point 8.77 feet Estimated
	Installation Date(s) 3/20/24
Grout <u>Cement/Bentonite</u>	Drilling Method Sonic
	Drilling Contractor Aquifer Drilling & Testing, Inc.
	Drilling Fluid Water
	Development Technique(s) and Date(s) Pump and Surge 4/8/24
ft*	Fluid Loss During Driling <u>10</u> gallons
	Static Depth to Water 5.31 feet below M.P.
Well Screen 2 inch diameter	Water Removed During Development <u>140</u> gallons
Sch 40 PVC 10 slot	Pumping Duration <u>1.16</u> hours
	Well Purpose Monitoring Well
Gravel Pack	
X Sand Pack (# 1 Sand)	Remarks 3-foot PVC sump from 90 to 93 ft bls.
Formation Collapse	The annulus around the sump is sealed with bentonite from 90 to 93 feet.
90 ft*	
93 ft*	Prepared by Kyle Barber
Measuring Point is	-1.2.2.2.7

Unless Otherwise Noted.

* Depth Below Land Surface

WELL CONSTRUCTION LOG

	Project Former Dangman Park MGP Site Well MW-24S
LAND SURFACE	Town/City Brooklyn
6inch diameter	County Kings State NY
drilled hole	Permit No. Not Applicable
✓ Well casing	Land Surface and Measuring Point Elevation: Datum: NGVD 29
2 inch diameter Sch 40 PVC	Land Surface 9.15 feet X Surveyed
	Measuring Point 8.75 feet Estimated
	Installation Date(s) 3/20/24
Grout <u>Cement/Bentonite</u>	Drilling Method Sonic
	Drilling Contractor Aquifer Drilling & Testing, Inc.
	Drilling Fluid None
ft*	Development Technique(s) and Date(s)
Bentonite	Pump and Surge
Slurry 3 ft*	4/5/24
● #00 Sand	
<u>4</u> ft*	Fluid Loss During <u>0</u> gallons
6ft*	Static Depth to Water 5.44 feet below M.P.
Well Screen	Water Removed During Development36gallons
2 inch diameter Sch 40 PVC 10 slot	Pumping Duration 0.3 hours
	Well Purpose Monitoring Well
Gravel Pack	
X Sand Pack (# 1 Sand)	Remarks <u>3-foot PVC sump from 16 to 19 ft bls.</u>
Formation Collapse	The annulus around the sump is sealed with bentonite from 16 to 19 feet.
ft*	
19 ft*	Prepared by Kyle Barber
Measuring Point is Top of Well Casing Unless Otherwise Noted.	

* Depth Below Land Surface

Groundwater Sampling Forms

									Page	1	of	1
Project No.	30205663 Well I					MW-2	21D	-	Date		5/10/24	
Project Name/	Location	Former Dang	jman Park MGP S	ite/Brooklyn	, New York				Weather		50s °F, Rain	1
Measuring Point Description		of Casing	Screen Setting (ft bls))-90	Casing Diameter (in.)		-	v	Well Material		PVC SS
Static Water Level (ft bmp)		6.90	Total De	epth (ft bmp)	92.15	_ Water	Column (ft)	85.25	Ga	allons in Well	13.64	
MP Elevation		9.87	Pump Int	ake (ft bmp)	85	_ Pu	urge Method	Pu	mp	Sample		
Pump On/Off	081	7/0936	_				;	Centrifugal Submersible	Х	Method	Low-	Flow
	mple Time Purge Start			me Purged _ ons Purged	0.29	-	Sample ID			- Sampled by	Alyssa	Hvnes.
	Purge End		-		0.0		•	DUP051024			Kyle B	
Time	Minutes	Rate	Depth to Water	Gallons	рН	Cond.	Turbidity	DO (m m/l)	Temp.	Redox	Appea	arance
	Elapsed	(mL/min)	(ft) -0.3	Purged	± 0.1	(mS/cm) ± 3%	(NTU) ± 10%	(mg/L) ± 10%	(°C) ± 3%	(mV) ± 10 mV	Color	Odor
0820	0		6.90	0	7.66	2.096	145	1.36	13.7	116.4	Colorless	Odorless
0825	5	450		0.3	6.96	20.967	150	0.50	14.7	44.0	Colorless	Odorless
0830	10	450	6.90	0.6	7.17	24.258	>1000	0.34	14.9	-1.9	Colorless	Odorless
0835						26.091	>1000	0.29	15.0	-67.0	Colorless	Odorless
0840	0840 20 450 6.91 1.2 7.3					26.897	529	0.27	15.1	-100.1	Colorless	Odorless
0845	25	450		1.5	7.33	27.258	285	0.26	15.2	-127.6	Colorless	Odorless
0850	30	450	6.91	1.8	7.32	27.377	160	0.24	15.2	-131.7	Colorless	Odorless
0855	35	450		2.1	7.35	27.557	111	0.23	15.4	-142.7	Colorless	Odorless
0900	40	450	6.91	2.4	7.35	27.602	82.6	0.21	15.5	-146.3	Colorless	Odorless
0905	45	450		2.7	7.37	27.642	93.9	0.21	15.1	-148.9	Colorless	Odorless
0910	50	450	6.91	3	7.36	27.804	60.9	0.18	15.5	-151.5	Colorless	Odorless
0915	55	450		3.3	7.37	27.760	48.7	0.19	15.5	-152.2	Colorless	Odorless
0920	60	450	6.91	3.6	7.37	27.775	46.8	0.19	15.5	-152.7	Colorless	Odorless
0925	65	450	6.91	3.9	7.38	27.824	31.8	0.18	15.5	-152.9	Colorless	Odorless
Constituent	s Sample	d		Container	r			Number		Preservati	ve	
VOCs 8260			-	VOA Vial				3		HCI		
SVOCs 8270)		-	Amber Gia	ass 250 mL			2		None		
Comments	Soft botto	om of well - t	total depth = 92.	15 ft bmp								
Well Casing												
Gallons/Foot	1" = 0.04 1.25" = 0.00		1.5" = 0.09 2" = 0.16		2.5" = 0.26 3" = 0.37		3.5" = 0.50 4" = 0.65		6" = 1.47			
Well Informa												
		Neptune Av	/enue							d at Arrival: Departure:	Yes	/ No / No
	Condition of Well: Good Well Completion: Flush Mount									Bopartaro.		/ 110

Project No.	302	205663		,	Well ID	MW-:	21S		Page Date	<u>1</u>	• •	2
Proiect Name/	/I_ocation	Former Danc	- gman Park MGP Si	ite/Brooklyn	New York			-			70s °F, Sunny	
-		<u> </u>		(0, D, CC),	,						100 ., call	,
Measuring Point Description	t	of Casing	Screen Setting (ft bls)		-16	Casing Diameter (in.)		-	١	Vell Material		PVC SS
Static Water Level (ft bmp)		7.12	Total De	epth (ft bmp)	18.36	Wate	r Column (ft)	11.24	Ga	allons in Well	1.80	
MP Elevation		9.87	Pump Int	ake (ft bmp)	11	P	urge Method	Pu Centrifugal	mp	Sample		
Pump On/Off			-	_		•	:	Submersible	Х		Low-	Flow
Sa	ample Time	1505	Volur	ne Purged	3.28			Other		-		
F	Purge Start	t 1301/1455	-	ns Purged	5.9	-		MW-21S		Sampled by		
	Purge End	1420/1510				Replica	te/Code No.	MW-21S M	S/MSD	-	Kyle B Shirle	
Time	Minutoo		Death to Water	Callona	~ 1 1	Cond	T. subidity		Tamp	Deday		
Time	Minutes Elapsed		Depth to Water (ft)	Gallons Purged	рН	Cond. (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp. (°C)	Redox (mV)	Appea	
	<u> </u>	ļ!	-0.3	⊢−−−−∔	± 0.1	± 3%	± 10%	± 10%	± 3%	± 10 mV	Color	Odor
1305	0	500	7.12	0	7.42	0.721	>1000	1.15	15.09	-84.0	Light Brown	Odorless
1310	5	1200	 	0.8	7.18	0.777	>1000	0.31	15.10	-72.6	Light Brown	Odorless
1315	10	200	7.14	0.9	7.13	0.794	641	0.25	16.75	-66.5	Light Brown	Odorless
1320	15	200	ļļ	1.0	7.14	0.790	467	0.26	17.31	-75.2	Light Brown	Odorless
1325	20	250	7.15	1.5	7.13	0.790	319	0.22	17.33	-74.9	Colorless	Odorless
1330	25	250	ļļ	1.8	7.12	0.787	236	0.19	16.93	-73.4	Colorless	Odorless
1335	30	250	7.15	2.4	7.10	0.787	193	0.19	16.73	-70.5	Colorless	Odorless
1340	35	250	ļļ	2.8	7.06	0.789	125	0.18	16.50	-68.2	Colorless	Odorless
1345	40	250	7.15	3.6	7.07	0.791	111	0.17	16.62	-67.6	Colorless	Odorless
1350	45	250	<u> </u>	4.0	7.07	0.794	78.4	0.17	16.46	-66.3	Colorless	Odorless
1355	50	250	7.15	4.4	7.04	0.786	67.8	0.10	15.31	-61.6	Colorless	Odorless
1400	55	250		4.7	7.04	0.789	47.4	0.11	15.22	-61.5	Colorless	Odorless
1405	60	250	7.15	5.0	7.03	0.792	38.5	0.11	15.04	-60.0	Colorless	Odorless
1410	65	250	7.15	5.3	7.05	0.980	28.1	0.12	14.91	-59.7	Colorless	Odorless
1415	70	250	7.15	5.6	7.04	0.983	17.4	0.12	14.88	-58.6	Colorless	Odorless
				<u></u>								
Constituent	s Sample	÷d		Container	r			Number		Preservat	ive	
VOCs 8260				VOA Vial			_	3		HCI		
SVOCs 8270)		•	Amber Gla	ass 250 mL	-	-	2		None		
Comments			tion interrupted b					t generator.	Purging r	esumed at	1455.	
	Two wate	er quality mea	easurements take	<u>ən. Sample</u>	e collection	resumed at 1	505.					
Well Casing Gallons/Foot			1.5" = 0.09		2.5" = 0.26		3.5" = 0.50		6" = 1.47			
Gallons/Fool	$1^{"} = 0.04$ $1.25^{"} = 0.0$		1.5'' = 0.09 2'' = 0.16		$2.5^{\circ} = 0.26$ $3^{\circ} = 0.37$		3.5" = 0.50 4" = 0.65		0" = 1.47			
Well Informa												
	Location: on of Well:	: Neptune Av	renue				_			d at Arrival:	Yes	/ No
	on of vveil: completion:		Flush Mo	unt] / Sti	ick Up		-	Wen	Lоскей аг	Departure:	Yes	/ No

Project No. 30205663

Well ID

MW-21S

Page 2 of 2

Project Name/Location Former Dangman Park MGP Site/Brooklyn, New York

Sampled by Alyssa Hynes,

Kyle Barber, Shirley He

Time	Minutes Elapsed	Rate (mL/min)	Depth to Water (ft)	Gallons Purged	рН	Cond. (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp. (°C)	Redox (mV)	Appea	arance
			-0.3		± 0.1	± 3%	± 10%	± 10%	± 3%	± 10 mV	Color	Odor
1420	75	250	7.15	5.9	7.04	0.981	12.5	0.12	14.79	-58.3	Colorless	Odorless
1454 pump on												
1455	80	225	7.16		7.18	0.928	69.9	1.43	15.15	-13.5	Colorless	Odorless
1500	85	225	7.16		7.07	0.944	48.1	0.76	16.19	-24.6	Colorless	Odorless

Project No.	302	205663			Well ID	MW-2	22D		Page Date		of 5/9/24	1
-			- Desk MOD S				-20	-				
Project Name/	Location	Former Dang	gman Park MGP Si	ite/Brookiyn	, New York				Weather		60s °F, Sunny	/
Measuring Point Description	t	of Casing	Screen Setting (ft bls)		D-90	Casing Diameter (in.)		_	١	Well Material		PVC SS
Static Water Level (ft bmp)		6.51	Total De	epth (ft bmp)	92.16	Wate	r Column (ft)) 85.65	Ga	allons in Well	13.70	
MP Elevation		9.47	Pump Int	ake (ft bmp)	85	_ Pi	urge Method	dPu	mp	Sample		
Pump On/Off	101	8/1140						Centrifugal Submersible	X	Method	Low-	Flow
	ample Time		- Volut	me Purged	0.54			Other		-		
ł	Purge Start	1018		ons Purged		-	Sample ID	MW-22D		Sampled by	-	
	Purge End	1140	-			Replica	te/Code No.				Kyle B Shirle	
	. Alternation			Litere			T and talks a			Destaur		
Time	Minutes Elapsed	Rate (mL/min)	Depth to Water (ft)	Liters Purged	рН	Cond. (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp. (°C)	Redox (mV)	Appea	rance
		 	-0.3	⊢	± 0.1	± 3%	± 10%	± 10%	± 3%	± 10 mV	Color	Odor
1020	0		6.51	0	7.64	18.97	>1000	0.53	15.92	-241.8	Brown	Odorless
1025	5	350	ļ!	2	7.64	20.89	>1000	0.38	16.34	-220.9	Brown	Odorless
1030					7.64	21.41	>1000	0.32	15.96	-224.4	Light brown	Odorless
1035					7.64	23.59	411	0.27	16.18	-216.0	Light brown	Odorless
1040					7.65	23.77	280	0.25	16.17	-215.4	Light brown	Odorless
1045	25	350	ļ!	10	7.64	24.02	189	0.21	16.28	-213.4	Colorless	Odorless
1050	30	350	6.50	12	7.63	20.31	117	0.18	16.71	-211.1	Colorless	Odorless
1055	35	350	ļ!	14	7.64	20.41	94.9	0.16	16.87	-208.9	Colorless	Odorless
1100	40	350	6.50	16	7.64	19.57	90.4	0.14	16.66	-206.2	Colorless	Odorless
1105	45	350	!	18	7.64	20.30	73.4	0.17	16.62	-201.7	Colorless	Odorless
1110	50	350	6.50	20	7.64	20.23	48.5	0.13	16.48	-199.6	Colorless	Odorless
1115	55	350	ļ!	22	7.63	20.22	42.2	0.12	16.37	-199.5	Colorless	Odorless
1120	60	350	6.50	24	7.65	20.28	37.5	0.09	16.62	-196.4	Colorless	Odorless
1125	65	350	6.50	26	7.65	20.32	33.1	0.09	16.66	-195.1	Colorless	Odorless
1130	70	350	!	28	7.64	20.54	18.4	0.08	16.83	-192.9	Colorless	Odorless
		<u> </u>				<u> </u>	<u> </u>					
Constituent	s Sample	d		Containe	r			Number		Preservat	ive	
VOCs 8260				VOA Vial	40 mL			3		HCI		
SVOCs 8270)		_		lass 250 mL		_	2	-	None		
Comments												
Well Casing	Volumes											
Gallons/Foot			1.5" = 0.09 2" = 0.16		2.5" = 0.26 3" = 0.37		3.5" = 0.50 4" = 0.65		6" = 1.47			
Well Inform	ation											
	Location: on of Well:	Neptune A	venue							d at Arrival: Departure:		/ No / No
	ompletion:		Flush Mo	ount / St	tick Up			V V Ch				

									Page	e <u> </u>	of	2
Project No.	302	205663			Well ID	MW-	22S	-	Date)	5/9/24	
Project Name/	Location	Former Dang	man Park MGP S	ite/Brooklyn	n, New York				Weathe	r	60s °F, Sunn	у
Measuring Point Description	t	of Casing	Screen Setting (ft bls)		-16	Casing Diameter (in.)			,	Well Material		PVC SS
Static Water Level (ft bmp)		6.44	Total De	epth (ft bmp)	19	Wate	r Column (ft)	12.56	Ga	allons in Well	2.0	
MP Elevation	1 (9.23	Pump Int	ake (ft bmp)	11	P	urge Method	Pu	mp	Sample		
Pump On/Off				•				Pur Centrifugal Submersible	X	Method	Low	Flow
			Mahu	n a Dumma d	2.02					-		
	ample Time Purge Start			ne Purged ns Purged	3.03 6.05		Sample ID	MW-22S		Sampled by	Alyssa	Hynes,
	Purge End	1235		-		Replica	te/Code No.			-	Kyle Barber, Shirley He	
										-		
Time	Minutes Elapsed	Rate (mL/min)	Depth to Water (ft)	Liters Purged	рН	Cond. (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp. (°C)	Redox (mV)	Appea	arance
		(-0.3	Jungen	± 0.1	± 3%	± 10%	± 10%	± 3%	± 10 mV	Color	Odor
1015	0	200	6.44	0	11.26	1.27	>1000	0.57	14.6	143.5	Brown	Odorless
1020	5	200		1	11.04	1.27		0.15	17.0	109.1	Brown	Odorless
1025	10	300		2.25	11.42	1.29		0.19	16.3	79.4	Brown	Odorless
1030	15	300	6.44	3.15	11.44	1.29	669	0.12	16.6	76.2	Brown	Odorless
1035	20	300		5.25	11.51	1.28		0.04	16.5	71.5	Brown	Odorless
1040	25	300		6.75	11.49	1.28		0.02	16.6	66.1	Brown	Odorless
1045	30	300	6.44	8.25	11.38	1.27	240	0.0	16.7	60.0	Cloudy	Odorless
*1050	35	300		8.25							Cloudy	Odorless
**1135	35	250	6.44	9.5	7.33	1.236	336	1.65	14.7	-11.3	Cloudy	Odorless
1140	40	250		10.75	7.21	1.141		0.38	16.67	1.7	Cloudy	Odorless
1145	45	250		12	7.18	1.140		0.29	17.35	5.0	Cloudy	Odorless
1150	50	250	6.44	13.25	7.16	1.140	80.7	0.17	17.93	5.3	Slightly Cloudy	Odorless
1155	55	250		14.5	7.15	1.140		0.18	18.48	9.4	Slightly Cloudy	Odorless
1200	60	250	6.44	15.75	7.15	1.163	44.9	0.18	19.18	12.5	Colorless	Odorless
1205	65	250	6.44	17	7.12	1.147	36.4	0.13	18.54	19.3	Colorless	Odorless
Constituent	s Sample	d		Containe	r			Number		Preservati	ve	
VOCs 8260	2			VOA Vial			_	3		HCI		
SVOCs 8270	J			Amber Gi	ass 250 mL		-			None		
			Recalibrated pH				aina ond o	tomated to	racelibrat	o watar gual	ity motor	
			ent with well dev meter and resur			s. rauseu pur	ging and a				ity meter.	
Total depth =		·										
Well Casing Gallons/Foot			1.5" = 0.09		2.5" = 0.26		3.5" = 0.50		6" = 1.47			
	1.25" = 0.0	6	2" = 0.16		3" = 0.37		4" = 0.65					
Well Inform												
		Neptune Av	renue							d at Arrival:		/ No
	on of Well: completion:		Flush Mc	ount / St	ick Up		-	vveil	Locked at	Departure:	res	/ No

Project No. 30205663

Well ID

MW-22S

Page 2 of 2

Project Name/Location Former Dangman Park MGP Site/Brooklyn, New York

Sampled by Alyssa Hynes, Kyle Barber,

Shirley He

Time	Minutes Elapsed	Rate (mL/min)	Depth to Water (ft)	Liters Purged	рН	Cond. (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp. (°C)	Redox (mV)	Appea	arance
			-0.3		± 0.1	± 3%	± 10%	± 10%	± 3%	± 10 mV	Color	Odor
1210	70	300	6.44	18.375	7.12	1.122	28.8	0.12	17.47	25.1	Colorless	Odorless
1215	75	300	6.44	19.875	7.08	1.110	21.7	0.08	17.01	33.0	Colorless	Odorless
1220	80	300	6.44	21.375	7.06	1.099	18.7	0.07	16.66	35.9	Colorless	Odorless
1225	85	300	6.44	22.875	7.04	1.097	15.5	0.08	16.70	35.8	Colorless	Odorless
 												

D. Jack No.	201						~~~			e <u>1</u>		2
Project No.			-			MW-2	23D	-		9		
Project Name/	Location	Former Danç	gman Park MGP Si	ite/Brooklyn	, New York				Weather	r	71 °F, Overca	ist
Measuring Point Description		of Casing	Screen Setting (ft bls))-90	Casing Diameter (in.)		-	Ŋ	Well Material	Х	PVC SS
Static Water Level (ft bmp)		5.29	Total De	∍pth (ft bmp)	92.81	Water	r Column (ft)	87.52	Ga	allons in Well	14	
MP Elevation		8.03	Pump Int	take (ft bmp)	85	_ Pi	urge Method	Pu Contrifugal	mp	Sample		
Pump On/Off	110)4/1235	-					Centrifugal Submersible			Low	-Flow
	ample Time		- Volur	me Purged	0.51							
F	Purge Start	1104		ons Purged		-	Sample ID	MW-23D		Sampled by		
	Purge End	1235	-			Replica	ite/Code No.		•		Kyle Barber, Shirley He	
Time	Minutes	Rate	Depth to Water	Liters	рН	Cond.	Turbidity	DO	Temp.	Redox		arance
	Elapsed	(mL/min)	(ft)	Purged		(mS/cm)	(NTU)	(mg/L)	(°C)	(mV)		-
			-0.3		± 0.1	± 3%	± 10%	± 10%	± 3%	± 10 mV	Color	Odor
1105	0	300	5.28	0	8.36	1364	21.9	0.01	15.12	-133.2	Colorless	Odorless
1110	5	300		1.5	7.34	1460	070	0	15.22	-165.6	Colorless	Odorless
1115	10	300	5.26	3	7.14	1586	678	AM	15.14	-163.6	Brown	Odorless
1120	15	400	 !	4.75	7.28	1623	───	AM	15.06	-169.4	Brown	Odorless
1125	20	350		6.5	7.08	1668		AM	15.38	-160.1	Brown	Odorless
1130	25	350	5.27	8.25	7.08	1708	125	AM	15.74	-142.2	Cloudy	Odorless
1135	30		ļ!	8.25							Cloudy	Odorless
1140	35	300	ļ!	9.75	7.11	1729		AM	15.70	-155.3	Cloudy	Odorless
1145	40	300	5.28	11.25	7.19	1735	50.9	AM	15.84	-157.1	Colorless	Odorless
1150	45	300	ļ!	12.75	7.19	1732		AM	15.73	-165.8	Colorless	Odorless
1155	50	300	ļ/	14.25	7.19	1734	<u> </u>	AM	15.75	-159.0	Colorless	Odorless
1200	55	400	5.27	16	7.20	1741	33.3	AM	15.84	-175.9	Colorless	Odorless
1205	60	400		18	7.20	1742	ļ	AM	15.95	-180.8	Colorless	Odorless
1210	65	400	5.27	20	7.19	1742	19.7	AM	16.02	-190.7	Colorless	Odorless
1215	70	400	5.28	22	7.20	1741	19.0	AM	16.02	-193.6	Colorless	Odorless
		<u> </u>	J	I								
Constituent	s Sample	d		Containe	r			Number		Preservat	ive	
VOCs 8260				VOA Vial	40 mL			3		HCI		
SVOCs 8270)		- ·		lass 250 mL		-	3 2	•	None		
Comments	AM <u>= an</u> d	omalo <u>us me</u>	asurement									
Well Casing Gallons/Foot	•						0.5% 0.50		<u> </u>			
Gallons/Foot	1'' = 0.04 1.25'' = 0.04		1.5" = 0.09 2" = 0.16		2.5" = 0.26 3" = 0.37		3.5" = 0.50 4" = 0.65		6" = 1.47			
Well Informa	ation											
Well	Location:	W. 5th Stre	et							d at Arrival:		/ No
	n of Well: mpletion:		Flush Mo	ount / St	tick Up		-	vveii	Locked at	Departure:	res	/ No

Page 2 of 2

Project No. 30205663

Well ID

MW-23D

Project Name/Location Former Dangman Park MGP Site/Brooklyn, New York

Sampled by Alyssa Hynes,

Kyle Barber, Shirley He

Time	Minutes Elapsed	Rate (mL/min)	Depth to Water (ft)	Liters Purged	рН	Cond. (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp. (°C)	Redox (mV)	Appea	arance
	-		-0.3	-	± 0.1	± 3%	± 10%	± 10%	± 3%	± 10 mV	Color	Odor
1220	75	400	5.28	24	7.22	1741	13.1	AM	16.04	-200.4	Colorless	Odorless
1225	80	400	5.28	26	7.24	1742	11.4	AM	16.08	-194.5	Colorless	Odorless
							ļ					ļ
												ļ

Project No.	302	205663			Well ID	MW-2	235		Page Date		-	2
-								-				
		Former Dang	gman Park MGP Si	ite/Brookiyr	I, New York				Weather		71 °F, Overcas	st
Measuring Point Description	t	of Casing	Screen Setting (ft bls)		6-16	Casing Diameter (in.)		-	٧	Nell Material	X	PVC SS
Static Water Level (ft bmp)		5.16	_ -	əpth (ft bmp)	18.31	Water	r Column (ft)	13.15	Ga	allons in Well	2.10	
MP Elevation		7.99	Pump Int	ake (ft bmp):	11	- Pı	urge Method	Pu	mp	Sample		- 1
Pump On/Off	114	3/1325	-				;	Centrifugal Submersible	X	Method	Low-	FIOW
	ample Time			me Purged		_				-		
	Purge Start Purge End		Gallo	ons Purged	7.14	Penlica	Sample ID	MW-23S		Sampled by	Alyssa I Kyle B	
	Pulge End	1325				Nepiloa	le/Coue no.		J		Shirle	
Time	Minutes	Rate	Depth to Water	Liters	рН	Cond.	Turbidity	DO	Temp.	Redox	Appea	irance
	Elapsed	(mL/min)	(ft)	Purged	-	(mS/cm)	(NTU)	(mg/L)	(°C)	(mV)		
4445	0	400	-0.3	0	± 0.1	± 3%	± 10%	± 10%	± 3%	± 10 mV	Color	Odor
1145	5	400	5.16	0 1.5	10.21	0.404	581 345	0.10	14.5 14.3	-88.1 -23.8	Light Brown	Odorless Odorless
1150		400	E 10		10.13	0.305	345	0.14			Light Brown	
1155	10	400	5.19	3	9.96	0.303	250	0.32	14.6	15.9	Light Brown	Odorless
1200	15	400	E 49	4.5	9.86	0.287	117	0.25	14.5	20.2	Colorless	Odorless
1205	20	400	5.18	6	9.77	0.289	94.8	0.34	14.8	24.5	Colorless	Odorless
1210	25	400		7.5	9.63	0.288	58.1	0.43	14.8	28.5	Colorless	Odorless
1215	30	400	5.18	9	9.57	0.284	38.7	0.50	15.1	34.4	Colorless	Odorless
1220	35	400		10.5	9.57	0.284	33.3	0.53	15.0	35.9	Colorless	Odorless
1225	40	400	5.18	12	9.54	0.277	19.1	0.70	14.9	39.8	Colorless	Odorless
1230	45	400		13.5	9.46	0.274	12.9	0.70	14.9	42.2	Colorless	Odorless
1235	50	400	5.18	15	9.46	0.271	10.6	0.65	14.9	42.6	Colorless	Odorless
1240	55	400	ļ′	16.5	9.51	0.280	8.77	0.67	14.8	45.0	Colorless	Odorless
1245	60	400	5.18	18	9.53	0.274	6.94	0.64	14.6	45.5	Colorless	Odorless
1250	65	400	5.18	19.5	9.22/7.50	0.272	5.46	0.59	14.5	46.7	Colorless	Odorless
1255	70	400		21.0	8.97/7.76	0.280	4.52	0.57	15.0	48.2	Colorless	Odorless
			<u> </u>		<u> </u>	<u> </u>						
Constituents	s Sample	d		Containe	≱r			Number		Preservat	ive	
VOCs 8260				VOA Vial	40 mL			3		HCI		
SVOCs 8270)		• · · ·	Amber G	lass 250 mL		-	3 2		None		
Comments	11 <u>52 - G</u>	enerator issu	ue, purging paus	ses <u>mome</u>	ntarily							
	1250-131	15 - Used se	econd water quali	ity meter t	o measure	рН						
Well Casing			. =						211 1 17			
Gallons/Foot	1" = 0.04 1.25" = 0.0		1.5" = 0.09 2" = 0.16		2.5" = 0.26 3" = 0.37		3.5" = 0.50 4" = 0.65		6" = 1.47			
Well Informa	ation											
Well	Location:	W. 5th Stree	et							d at Arrival:		/ No
	on of Well: completion:		Flush Mo		tick Up		-	Well	Locked at	Departure:	Yes	/ No
	Inpierion.											

Page 2 of 2

Project No. 30205663

Well ID

MW-23S

Project Name/Location Former Dangman Park MGP Site/Brooklyn, New York

Sampled by Alyssa Hynes,

Kyle Barber, Shirley He

Minutes Rate Depth to Water Liters Cond. Turbidity DO Redox Time pН Temp. Appearance Elapsed (mL/min) Purged (mS/cm) (NTU) (mg/L) (°C) (ft) (mV) -0.3 ± 0.1 ± 3% ± 10% ± 10% ± 3% ± 10 mV Color Odor 1300 75 400 5.18 22.5 8.90/7.37 0.280 4.41 0.58 14.9 49.0 Colorless Odorless 1305 80 400 24.0 8.86/7.46 0.280 4.34 0.58 14.9 49.4 Colorless Odorless 25.5 8.70/7.27 Colorless 85 400 5.18 0.281 0.57 50.1 Odorless 1310 3.80 15.0 1315 90 400 27.0 8.59/7.20 0.280 3.69 0.62 14.9 50.9 Colorless Odorless

									Page	e <u>1</u>	of	2
Project No.	302	205663	-		Well ID	MW-	24D	-	Date		5/7/24	
Project Name/	Location	Former Dang	gman Park MGP S	ite/Brooklyr	n, New York				Weather		67 °F, Sunny	/
Measuring Point Description		of Casing	Screen Setting (ft bls)		0-90	Casing Diameter (in.)		_	١	Well Material		PVC SS
Static Water Level (ft bmp)		5.99	Total De	pth (ft bmp)	93	Wate	r Column (ft)	86.22	Ga	allons in Well	13.80	
MP Elevation	8	8.77	Pump Int	ake (ft bmp)	85	P	urge Method	lPu	mp	Sample		
Pump On/Off	103	33/1237	-	-		-		Centrifugal Submersible		Method	Low-	Flow
			-	D	0.04			Other		-		
	imple Time Purge Start			ne Purged ns Purged	0.24 3.31	-	Sample ID	MW-24D		Sampled by	Alyssa	Hynes,
	Purge End	1237	-			Replica	te/Code No.				Kyle B Shirle	
Time	Minutes	Data	Double to Mistor	Litere		Cand	Trank i dite e		Taman	Dedev		
Time	Minutes Elapsed	Rate (mL/min)	Depth to Water (ft)	Liters Purged	рН	Cond. (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp. (°C)	Redox (mV)	Арреа	
			-0.3		± 0.1	± 3%	± 10%	± 10%	± 3%	± 10 mV	Color	Odor
1035	0	500	5.99	0	7.40	6.054	>1000	2.34	15.31	-101.4	Brown	Odorless
1040	5	500		1.25	7.33	6.128	>1000	0.39	15.33	-91.8	Brown	Odorless
1045					7.27	6.298	>1000	0.19	15.81	-106.4	Light Brown	Odorless
					7.33	6.242	>1000	0.12	15.36	-82.7	Light Brown	Odorless
1055	20	250	5.98	3.5	7.34	6.263	>1000	0.16	15.40	-75.4	Light Brown	Odorless
1100	25	400		4.0	7.31	6.365	822	0.18	15.81	-72.7	Light Brown	Odorless
1105	30	400	5.98	4.5	7.32	6.464	530	0.12	16.47	-71.2	Light Brown	Odorless
1110	35	400		5.0	7.34	6.423	374	0.13	15.92		Light Brown	Odorless
1115	40	400	5.98	5.5	7.35	6.405	306	0.11	15.76	-68.5	Light Brown	Odorless
1120	45	400		6.0	7.34	6.404	252	0.12	15.62	-66.8	Light Brown	Odorless
1125	50	400	5.98	6.5	7.33	6.397	205	0.16	15.39	-64.8	Colorless	Odorless
1130	55	400		7.0	7.33	6.405	163	0.16	15.48	-63.8	Colorless	Odorless
1135	60	400	5.98	7.5	7.34	6.411	133	0.16	15.58	-62.9	Colorless	Odorless
1140	65	400	5.98	8.0	7.32	6.433	117	0.17	15.49	-61.6	Colorless	Odorless
1145	70	400		8.5	7.32	6.437	119	0.18	15.29	-59.3	Colorless	Odorless
Constituent	s Sample	d		Containe	r			Number		Preservat	ive	
VOCs 8260				VOA Vial	40 ml			3		HCI		
SVOCs 8270)		-		ass 250 mL	-	-	3 2		None		
Comments	Total der	oth – 92 21 f	t hmn									
Difficulty kee			· · ·									
Well Casing	Volumes	5										
Gallons/Foot	1" = 0.04 1.25" = 0.0	06	1.5" = 0.09 2" = 0.16		2.5" = 0.26 3" = 0.37		3.5" = 0.50 4" = 0.65		6" = 1.47			
Woll Inform							J					
Well Inform Well		W. 5th Stre	et				_	V	Vell Locked	d at Arrival:	Yes	/ No
	n of Well:				iok Un		-	Well	Locked at	Departure:	Yes	/ No
vveli Co	mpletion:			ount / St	іск Ор							

Page 2 of 2

Project No. 30205663

Well ID

MW-24D

Project Name/Location Former Dangman Park MGP Site/Brooklyn, New York

Sampled by Alyssa Hynes, Kyle Barber,

Shirley He

Image: Probability of the second s	Time	Minutes Elapsed	Rate (mL/min)	Depth to Water (ft)	Liters Purged	рН	Cond. (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp. (°C)	Redox (mV)	Appea	arance
1155 80 400 9.5 7.32 6.456 108 0.17 15.88 -60.0 Colorless Odorless 1200 85 400 5.98 10.0 7.30 6.469 63.5 0.16 16.05 -57.6 Colorless Odorless 1205 90 400 10.5 7.26 6.475 57.4 0.15 16.11 -55.8 Colorless Odorless 1210 95 400 5.98 11.0 7.26 6.475 57.4 0.15 16.11 -55.8 Colorless Odorless 1210 95 400 5.98 11.0 7.26 6.468 41.7 0.15 15.95 -54.4 Colorless Odorless 1215 100 400 11.5 7.24 6.453 86.6 0.15 15.86 -51.8 Colorless Odorless 1220 105 400 5.98 12.0 7.23 6.462 54.6 0.14 15.96 <td></td> <td>-</td> <td>· ·</td> <td></td> <td></td> <td>± 0.1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Color</td> <td>Odor</td>		-	· ·			± 0.1						Color	Odor
1200 85 400 5.98 10.0 7.30 6.469 63.5 0.16 16.05 -57.6 Colorless Odorless 1205 90 400 10.5 7.26 6.475 57.4 0.15 16.11 -55.8 Colorless Odorless 1210 95 400 5.98 11.0 7.26 6.468 41.7 0.15 16.11 -55.8 Colorless Odorless 1210 95 400 5.98 11.0 7.26 6.468 41.7 0.15 15.95 -54.4 Colorless Odorless 1215 100 400 11.5 7.24 6.453 86.6 0.15 15.86 -51.8 Colorless Odorless 1220 105 400 5.98 12.0 7.23 6.462 54.6 0.14 15.96 -51.1 Colorless Odorless	1150	75	400	5.98	9.0	7.33	6.445	114	0.17	15.59	-60.9	Colorless	Odorless
1205 90 400 10.5 7.26 6.475 57.4 0.15 16.11 55.8 Colorless Odorless 1210 95 400 5.98 11.0 7.26 6.468 41.7 0.15 15.95 -54.4 Colorless Odorless 1215 100 400 11.5 7.24 6.453 86.6 0.15 15.86 -51.8 Colorless Odorless 1220 105 400 5.98 12.0 7.23 6.462 54.6 0.14 15.96 -51.1 Colorless Odorless	1155	80	400		9.5	7.32	6.456	108	0.17	15.88	-60.0	Colorless	Odorless
1210 95 400 5.98 11.0 7.26 6.468 41.7 0.15 15.95 -54.4 Colorless Odorless 1215 100 400 11.5 7.24 6.453 86.6 0.15 15.86 -51.8 Colorless Odorless 1220 105 400 5.98 12.0 7.23 6.462 54.6 0.14 15.96 -51.1 Colorless Odorless	1200	85	400	5.98	10.0	7.30	6.469	63.5	0.16	16.05	-57.6	Colorless	Odorless
1215 100 400 11.5 7.24 6.453 86.6 0.15 15.86 -51.8 Colorless Odorless 1220 105 400 5.98 12.0 7.23 6.462 54.6 0.14 15.96 -51.1 Colorless Odorless	1205	90	400		10.5	7.26	6.475	57.4	0.15	16.11	-55.8	Colorless	Odorless
1220 105 400 5.98 12.0 7.23 6.462 54.6 0.14 15.96 -51.1 Colorless Odorless	1210	95	400	5.98	11.0	7.26	6.468	41.7	0.15	15.95	-54.4	Colorless	Odorless
	1215	100	400		11.5	7.24	6.453	86.6	0.15	15.86	-51.8	Colorless	Odorless
11251104005.9812.57.226.47241.10.1415.955.9.4ColorlessOdorlessIII<	1220	105	400	5.98	12.0	7.23	6.462	54.6	0.14	15.96	-51.1	Colorless	Odorless
Image: series of the series	1225	110	400	5.98	12.5	7.22	6.472	41.1	0.14	15.95	-50.4	Colorless	Odorless
Image: series of the series													
Image: sector of the sector													
Image: series of the series													
Image: sector of the sector													
Image: series of the series													
Image: series of the series													
Image: series of the series													
Image: sector of the sector													
Image: series of the series													
Image: series of the series													
Image: state in the state in													
Image: state stat													
Image: state of the state													
Image: state of the state o													
Image: state of the state													
Image: Second													
Image: Section of the section of t													
Image: state of the state													
Image: Second													

~					· · · · · · · ·					e <u>1</u>		2
Project No.	302	:05663	-		Well ID	MW-2	24S	-	Date	9	5/7/24	
Project Name/	Location	Former Danç	gman Park MGP Si	ite/Brooklyn	ı, New York				Weather	ſ	67 °F, Sunny	/
Measuring Point Description		of Casing	Screen Setting (ft bls)		3-16	Casing Diameter (in.)		-	١	Nell Material	Х	PVC SS
Static Water Level (ft bmp)		5.07	Total De	əpth (ft bmp)	19	Wate	r Column (ft)	9.56	Ga	allons in Well	1.53	
MP Elevation	{	3.75	_ Pump Int	.ake (ft bmp)	11	P	urge Method	l Pu	mp	Sample		
Pump On/Off	103	3/1245				-	;	Centrifugal Submersible	X	Method	Low-	Flow
			- Volu		0.34					-		
	mple Time	1035		me Purged		-	Sample ID	MW-24S	-	Sampled by		
I	Purge End	1245	-	-		Replica	te/Code No.	MW-24S			Kyle B	
	•		-			-	-	•		•		
Time	Minutes Elapsed	Rate (mL/min)	Depth to Water (ft)	Liters Purged	рН	Cond. (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp. (°C)	Redox (mV)	Appea	arance
		` · ·	-0.3		± 0.1	± 3%	± 10%	± 10%	± 3%	± 10 mV	Color	Odor
1035	0	450	6.08	0	8.62	0.437	130	0.11	13.6	-22.2	Gray	Odorless
1040	5	450	<u> </u>	2.25	8.77	0.449		0.10	14.6	-53.0	Gray	Odorless
1045	10	450	6.09	4.5	8.55	0.441	30.7	0.10	14.5	-56.3	Gray	Odorless
1050	15	450		6.75	8.62	0.437		0.01	14.5	-61.8	Gray	Odorless
1055	20	450	6.10	9	8.71	0.443	12.3	0.01	14.6	-65.0	Colorless	Odorless
1100	25	450		11.25	8.64	0.450		0.02	14.6	-67.8	Colorless	Odorless
1105	30	450	6.11	13.5	8.56	0.462	7.18	1.21	14.7	-72.0	Colorless	Odorless
1110	35	450		15.75	8.38	0.448		1.24	14.7	-72.5	Colorless	Odorless
1115	40	450	6.11	18	8.37	0.450	7.88	0.95	15.1	-75.5	Colorless	Odorless
1120	45	450		20.25	8.36	0.452		0.70	15.1	-75.9	Colorless	Odorless
1125	50	450	6.11	22.5	8.65	0.451	4.47	0.28	15.2	-76.5	Colorless	Odorless
1130	55	450		24.75	8.85	0.452		0.15	15.2	-77.6	Colorless	Odorless
1135	60	450	6.11	27	8.69	0.451	5.25	0.02	15.1	-77.5	Colorless	Odorless
1140	65	450	6.11	29.25	8.66	0.451	4.41	0.0	15.0	-78.1	Colorless	Odorless
1145	70	450	6.11	31.5	8.71	0.452	7.19	0.0	15.1	-78.9	Colorless	Odorless
		<u> </u>			L							
Constituents	s Sample	d		Containe	₽r			Number		Preservat	ive	
VOCs 8260				VOA Vial	40 mL			3		HCI		
SVOCs 8270)				lass 250 mL		-	3 2		None		
Comments	Total der	oth = 15.63 f	ít bmp									
Well Casing	•	;	. = "				"					
Gallons/Foot	1" = 0.04 1.25" = 0.00	6	1.5" = 0.09 2" = 0.16		2.5" = 0.26 3" = 0.37		3.5'' = 0.50 4'' = 0.65		6" = 1.47			
Well Informa	otion											
		W. 5th Stre	et					M	/ell Locke	d at Arrival:	Yes	/ No
	n of Well:			ount / St	tiak Up		-	Well	Locked at	Departure:	Yes	/ No

Project No. 30205663

Well ID

MW-24S

Page 2 of 2

Project Name/Location Former Dangman Park MGP Site/Brooklyn, New York

Sampled by Alyssa Hynes, Kyle Barber,

Shirley He

Time	Minutes Elapsed	Rate (mL/min)	Depth to Water (ft)	Liters Purged	рН	Cond. (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp. (°C)	Redox (mV)	Appea	arance
	-		-0.3		± 0.1	± 3%	± 10%	± 10%	± 3%	± 10 mV	Color	Odor
1150	75	450	6.11	33.75	8.83	0.453	5.68	0.0	15.1	-80.3	Colorless	Odorless
1155	80	450	6.11	36	8.93	0.452	5.28	0.0	15.1	-80.5	Colorless	Odorless
1200	85	450	6.11	38.25	8.80	0.454	2.64	0.0	15.2	-81.7	Colorless	Odorless
1205	90	450	6.11	40.5	8.60	0.454	2.47	0.0	15.1	-81.3	Colorless	Odorless
1210	95	450	6.11	42.75	7.02	0.455	3.69	0.0	15.1	-80.7	Colorless	Odorless
1215	100	450	6.11	45	7.01	0.454	2.50	0.0	15.0	-79.5	Colorless	Odorless
1220	105	450	6.11	47.25	8.25	0.456	1.64	0.0	15.1	-80.5	Colorless	Odorless
1225	110	450	6.11	49.5	8.13	0.457	3.51	0.0	15.1	-80.4	Colorless	Odorless
1230	115	450	6.12	51.75	8.10	0.452	5.13	0.0	15.1	-80.9	Colorless	Odorless
1235	120	450	6.12	54	8.12	0.459	5.20	0.0	15.1	-81.6	Colorless	Odorless

Data Usability Summary Reports

National Grid-Former Dangman Park MGP Site

Data Usability Summary Report (DUSR)

Brooklyn, New York

Volatile Organic Compound and Semi-Volatile Organic Compounds Analyses

SDGs # 460-303656-1 and 460-303688-1

Analyses Performed By: Eurofins Test America Edison, New Jersey

Report #: 54418R Review Level: Tier III Project: 30205663.04

Summary

This data quality assessment summarizes the review of Sample Delivery Groups (SDGs) #460-303656-1 and 460-303688-1 for samples collected in association with the Former Dangman Park MGP site, Brooklyn, New York. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

SDG Number	Sample ID	Lab ID	Matrix	Sample Collection	Parent		۵	nalysi	S	
SDG Nulliber	Sample ID		Watrix	Date	Sample	voc	SVOC	РСВ	MET	MISC
	TB050724	460-303565-1	Water	5/07/2024		Х				
460-303656-1	EB050724	460-303565-2	Water	5/07/2024		Х	Х			
+00-303030-1	MW-24S	460-303565-3	Groundwater	5/07/2024		Х	Х			
	MW-24D	460-303565-4	Groundwater	5/07/2024		Х	Х			
	TB050824	460-303688-1	Water	5/08/2024		Х				
460-303688-1	EB050824	460-303688-2	Water	5/08/2024		Х	Х			
100 000000 1	MW-23S	460-303688-3	Groundwater	5/08/2024		Х	Х			
	MW-23D	460-303688-4	Groundwater	5/08/2024		Х	Х			

Analytical Data Package Documentation

The table below evaluates the data package completeness.

Rep	orted	Performance Acceptable		Not Required	
No	Yes	No	Yes	Kequileu	
	X		Х		
	Х		Х		
	X		Х		
	X		Х		
	X		Х		
	Х		Х		
	X		Х		
	X		Х		
	X		Х		
	X		Х		
	X		Х		
	X		Х		
		X X <td< td=""><td>Reported Accel No Yes No Image: Second stress stress</td><td>ReportedAcceptableNoYesNoYesNoXXX</td></td<>	Reported Accel No Yes No Image: Second stress	ReportedAcceptableNoYesNoYesNoXXX	

Note:

QA Quality assurance

Organic Analysis Introduction

Analyses were performed according to United States Environmental Protection Agency USEPA) SW-846 Methods 8260D and 8270E. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, EPA 540/R-99/008, October 1999, as appropriate).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound is considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if

it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Volatile Organic Compound (VOC) Analyses

1. Holding Times

The specified holding times for the following methods are presented in the table below.

Method	Matrix	Holding Time	Preservation
SW-846 8260D	Water	14 days from collection to analysis(preserved)7 days from collection to analysis (non-preserved)	Cool to <6 °C; preserved to a pH of less than 2 s.u.

Note:

s.u. Standard units

All samples were analyzed within the specified holding time criterion.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (B) of data. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Analytes	Sample Result	Qualification
Acetone (Equipment Blank)	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL
Methylene chloride (Equipment Blank)	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL
	Acetone (Equipment Blank) Methylene chloride	Acetone Detected sample results <rl <bal<="" and="" td=""> (Equipment Blank) Methylene chloride Detected sample results <rl <bal<="" and="" td=""></rl></rl>

Note:

RL Reporting limit

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable, and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

SDG 460-303656-1: All compounds associated with the calibrations were within the specified control limits.

SDG 460-303688-1: All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/ Continuing	Compound	Criteria	
TB050824		Chloromethane	+27.4%	
EB050824				
MW-23S	CCV %D	1,1-Dichloroethane	+21.6%	
MW-23D		Chloromethane	+27.8%	

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R

Initial/Continuing	Criteria	Sample Result	Qualification
		Detect	J
	RRF <0.01 ¹	Non-detect	R
Initial and Continuing Calibration		Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
		Detect	
	%RSD > 20% or a correlation coefficient <0.99	Non-detect	UJ
Initial Calibration		Detect	J
	%RSD >90%	Non-detect	R
	///////////////////////////////////////	Detect	J
	%D >20% (increase or decrease in sensitivity)	Non-detect	UJ
Continuing Calibration		Detect	J
Continuing Calibration	%D >90% (increase/decrease in sensitivity)	Non-detect	R
		Detect	J

Note:

¹ RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

A MS/MSD was not performed on a sample location associated with either SDG.

8. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the LCS/LCSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

SDG 460-303688-1: All compounds associated with the LCS/LCSD analysis exhibited recoveries and RPDs within the control limits.

Sample locations associated with LCS/LCSD analysis exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	LCS Recovery	LCSD Recovery
<u>SDG 460-303656-1:</u>			
TB050724 EB050724 MW-24S MW-24D	Bromomethane	>UL	AC

The criteria used to evaluate the LCS/LCSD recoveries are presented in the following table. In the case of an LCS/LCSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
	Detect	J
< the lower control limit (LL) but > 10%	Non-detect	UJ

Control Limit	Sample Result	Qualification
	Detect	J
< 10%	Non-detect	R
< 10%	Detect	J

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate was not collected along with a sample location associated with either SDG.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

Data Validation Checklist for Volatiles

VOCs: SW-846 8260D		eported		ormance eptable	Not Required
		Yes	No	Yes	
GAS CHROMATOGRAPHY/MASS SPECTROMET	RY (GC/MS)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					1
A. Method blanks		Х		Х	
B. Equipment blanks		Х	Х		
C. Trip blanks		Х		Х	
Laboratory Control Sample (LCS) %R		X	Х		
Laboratory Control Sample Duplicate (LCSD) %R		X		X	
LCS/LCSD Precision (RPD)		X		Х	
Matrix Spike (MS) %R					Х
Matrix Spike Duplicate (MSD) %R					Х
MS/MSD Precision (RPD)					Х
Field/Lab Duplicate (RPD)					Х
Surrogate Spike %R		X		X	
Dilution Factor		Х		X	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		X		X	
Initial calibration %RSDs		X		X	
Continuing calibration RRFs		X		X	
Continuing calibration %Ds		X	X		

Re	Reported		Performance Acceptable	
No	Yes	No	Yes	Required
′ (GC/MS	;)			
	X		х	
	X		Х	
	X		Х	
	Х		Х	
	X		Х	
	x		Х	
	X		Х	
	Х		Х	
	No	NoYes(GC/MS)(GC/MS)XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Reported Accept No Yes No Yes (GC/MS) X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I	Reported Acceptable No Yes No Yes No Yes (GC/MS) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

Semivolatile Organic Compound (SVOC) Analyses

1. Holding Times

The specified holding times for the following methods are presented in the table below.

Method	Matrix	Holding Time	Preservation
SW-846 8270E	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C

All samples were analyzed within the specified holding time criterion.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/ Continuing	Compound	Criteria
SDG 460-303656-1:			
EB050724 MW-24S MW-24D	CCV %D	4-Nitroaniline	-23.7%
SDG 460-303688-1:			
		4-Chloroaniline	+23.5%
		Caprolactam	+28.9%
		2,6-Dinitrotoluene	+22.1%
EB050824		3-Nitroaniline	+29.3%
MW-23S	CCV %D	2,4-Dinitrophenol	+40.8%
MW-23D		2,4-Dinitrotoluene	+33.0%
		4-Nitroaniline	+28.7%
		4,6-Dinitro-2-methylphenol	+28.0%
		Pentachlorophenol	+26.8%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
RRF <0.05		Non-detect	R
Initial and Continuing		Detect	J
Calibration RRF <0.01 ¹		Non-detect	R
		Detect	J

Initial/Continuing	Criteria	Sample Result	Qualification
RRF >0.05 or RRF >0.01 ¹		Non-detect	No Action
		Detect	
	%RSD > 20% or a correlation coefficient <0.99	Non-detect	UJ
Initial Calibration		Detect	J
	%RSD >90%	Non-detect	R
		Detect	J
	%D >20% (increase or decrease in sensitivity)	Non-detect	UJ
Continuing Calibration		Detect	J
	% D > 00% (increase/decrease in consitivity)	Non-detect	R
	%D >90% (increase/decrease in sensitivity)		J

Note:

¹ RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

A MS/MSD was not performed on a sample location associated with either SDG.

8. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the LCS/LCSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

SDG 460-303656-1: All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

SDG 460-303688-1: All compounds associated with the LCS/LCSD analysis exhibited RPDs within the control limits.

Sample locations associated with LCS/LCSD analysis exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	LCS Recovery	LCSD Recovery
<u>SDG 460-303688-1:</u>			
EB050724	2,4-Dinitrophenol	>UL	>UL
MW-23S	Atrazine	>UL	>UL
MW-23D	Benzaldehyde	>UL	>UL

The criteria used to evaluate the LCS/LCSD recoveries are presented in the following table. In the case of an LCS/LCSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
	Detect	J
< the lower control limit (11) but > 10%	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
< 10%	Non-detect	R
	Detect	J

Sample locations associated with LCS/LCSD recoveries exhibiting an RPD greater than of the control limit presented in the following table.

Sample Locations	Compound
<u>SDG 460-303656-1:</u>	
EB050724	
MW-24S	Caprolactam
MW-24D	

The criteria used to evaluate the RPD between the LCS/LCSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	UJ
	Detect	J

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate was not collected along with a sample location associated with either SDG.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

Data Validation Checklist for Semi-Volatiles

SVOCs: SW-846 8270E	Re	Reported		ormance eptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/MS	;)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					1
A. Method blanks		X		X	
B. Equipment blanks		X		X	
Laboratory Control Sample (LCS) %R		X	X		
Laboratory Control Sample Duplicate (LCSD) %R		X	X		
LCS/LCSD Precision (RPD)		X	Х		
Matrix Spike (MS) %R					Х
Matrix Spike Duplicate (MSD) %R					Х
MS/MSD Precision (RPD)					Х
Field/Lab Duplicate (RPD)					Х
Surrogate Spike %R		Х		X	
Dilution Factor		X		X	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		X	
Initial calibration %RSDs		X		X	
Continuing calibration RRFs		Х		X	
Continuing calibration %Ds		Х	X	_	
Instrument tune and performance check		X		X	

Re	ported	Performar Acceptat	
No	Yes	No Ye	
Y (GC/MS))		
	Х		X
	Х		X
	Х		X
	Х		X
	X		x
	Х		X
	Х		x
	No	Y (GC/MS) X	Reported Acceptate No Yes No Ye Y (GC/MS) X

Notes:

- %RSDRelative standard deviation%RPercent recovery
- RPD Relative percent difference
- %D Percent difference

Data Usability Summary Report

Sample Compliance Report

SAMPLE COMPLIANCE REPORT

Sample	Sampling		Sample			Cor	nplianc	y 1		Neuropauriteurop
Delivery Group (SDG)	Date	Protocol	ID	Matrix	VOC	SVOC	РСВ	MTL	MISC	Noncompliance
			TB050724	Water	Yes					
			EB050724	Water	Yes	No				SVOC- LCS/LCSD RPD, Continuing calibration %D
460-303656-1	5/07/2024	SW-846	MW-24S	Water	Yes	No				SVOC- LCS/LCSD RPD, Continuing calibration %D
			MW-24D	Water	No	No				VOC- Equipment Blank contamination
			10100-240	vvalei	INU	INO				SVOC- LCS/LCSD RPD, Continuing calibration %D
			TB050824	Water	No					VOC- Continuing calibration %D
			10030024	vvalei	INU					SVOC- LCS/LCSD %R, Continuing calibration %D
			EB050824	Water	No	No				VOC- Continuing calibration %D
			LD000024	vvaler	NO	INC.				SVOC- LCS/LCSD %R, Continuing calibration %D
460-303688-1	5/08/2024	SW-846	MW-23S	Water	No	No				VOC- Continuing calibration %D
			10100-200	vvater	NO					SVOC- LCS/LCSD %R, Continuing calibration %D
										VOC- Equipment Blank contamination, Continuing
			MW-23D	Water	No	No				calibration %D
										SVOC- LCS/LCSD %R, Continuing calibration %D

Note:

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Lisa Horton

SIGNATURE:

Lisa Hoston

DATE: June 9, 2024

PEER REVIEW: Joe Houser

DATE: June 10, 2024

www.arcadis.com 54418R_460-303656-1_460-303688-1.docx Chain of Custody and Corrected Sample Analysis Data Sheets

Eurofins Environment Testing Northeast, LLC

777 New Durham Road Edison, NJ 08817

Chain of Custody Record

Phone (732) 549-3900 Fax (732) 549-3679

Client Information	Sampler Alyssa Phone	P Hun	7 0	Lab P Gilm	M Nore, Ji	ulie						Carrie	er Trac	king No(s)			COC No		
Client Contact:	Phone	$\sim -\pi \gamma r$		E-Mai	il		ot our	rofine		 m		1						Page Page / of /		
Steven Feldman Company	516-20	1+-140	Q	Julie	Gilmo	ore(w)	eteur	onns				J						Job # 30	1157	
Arcadis of New York, Inc									Ana	lysis	s Re	ques	sted					Preservation Codes		>
Address 105 Maxess Road, Suite N108	Due Date Request	ed																	M - Hexane	
City	TAT Requested (da				1													B - NaOH	N - None	
Melville State Zip	4	5 Day	/s											{			-	D - Nitric Acid	0 - AsNaO2 P - Na2O4S	
NY, 11747																	and and and	F - MeOH	Q - Na2SO3 R - Na2S2O3	
Phone (631) 249-7600	PO #																		S - H2SO4 T - TSP Dodeca	ahydrate
Email	WO #	40004			2				1	1	ı		_						U - Acetone V - MCAA	
Steven Feldman@arcadis com Project Name.	30205663 04 04 Project #	42624			es o					460					ļ		ners	K - EDTA	W - pH 4-5 Z - other (specif	ifv)
Former Dangman Park MGP Site	30205663 04				es c				i	300							containers	Other [.]		.,,
Site Former Dangman Park MGP Site	SSOW#				Sample (Yes or No SD (Yes or No)	1				160-303656							of cc	other		
		[Sample	Matrix	ald Filtered Sample (Yes or rform MS/MSD (Yes or No)	=	(p			Criain										
		1	Туре	(W≕water S≕solid	Filte	(8260)	SVOCs (8270)			all							Total Number			
Sample Identification	Sample Date	Sample Time	(C≃comp, G≈orab)	O=waste/oil BT=Tissue, A=Air)	Field		200			2							Fotal	Special Ins	structions/No	ote:
Sample Identification		\sim		tion Code:		Á	1		\uparrow		Custod			1			X			
TB050724	5 7 24		G	W	NN	X				• ŀ	d III						2			
EB050724	57724	0900	G		NN	X	X			-							4			
MW-a4S	5724	1240	G		NN	_			-	-							5			
MW-24D	5724	1230	G	W	NN		X				-			f	1		5			
1111- 210	217127	10.50	G		††	+-		$\left - \right $	-+	~			. 1	+		1				
		 			++	+	$\left - \right $	$\left - \right $			+	+	$\left - \right $		+		itere a			
					┼┼╴	+	$\left - \right $	$\left - \right $	-+				$\left - \right $		+		-	{		
		<u> </u>			\downarrow			$\left - \right $					$\left - \right $				-			
					\square	1												<u></u>		
					Π	T			T	T			1 1	T		}				
	+	1			$\uparrow \uparrow$	\uparrow					T	1			1	$\left[\right]$				
Possible Hazard Identification		L	J	L	- si	ampl	e Disj	posa	I (A f	iee m	ay be	asse	ssed	if sam	ples a	are r	etaiı	ned longer than 1	month)	
Non-Hazard Flammable Skin Irritant Pois	on B	own 🖂	Radiological										osal E	ly Lab			Arc	hive For	Months	
Deliverable Requested 1, II, III, IV, Other (specify)					S	pecia	l Instr	ructio	ns/QC	Req	uirem	ents								
Empty Kit Relinquished by		Date			Time								Metho	d of Shi	pment:					
Reinquished by	Date/Time	1.41	20	Company Arcadis	٢	Rec	eived b	oy.	\sim					D	te/Time	11	11	\$ MAT	Company	
Alyssa R Hynes Relinquished by	5/7/24 Date/Tine	-{-{-?	/	Company		Rec	elingt	Dy.	2e		0			- Ho		$\frac{1}{4}$		Tes	Compaky	
Retinquisted by		1 the	0	Company		Rec	eived b			${1}$				Da	ite/Time				Company	4
Custody Seals Intact: Custody Seal No.:	1/17		~	10			1		ure(s)	C and	Other	Remark	s		2[(24	e 19:00	ETF	
Δ Yes Δ No															شەرە يېزىرىن					010
1-6 2-	022	9				_													Ver 01/16/20	119

Client: Arcadis U.S., Inc. Project/Site: Former Dangman Park MGP Site

Job ID: 460-303656-1

Qualifiers	
GC/MS VOA	
Qualifier	Qualifier Description
	LCS or LCSD is outside acceptance limits.
J	Indicates an estimated value.
U	Analyzed for but not detected.
GC/MS Semi	VOA
Qualifier	Qualifier Description
r	RPD of the LCS and LCSD exceeds the control limits
E	Compound concentration exceeds the upper level of the calibration range of the instrument for that specific analysis.
J	Indicates an estimated value.
U	Analyzed for but not detected.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
ĭ	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
_OD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
NDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ИL	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)

- ND Not Detected at the reporting limit (or MDL or EDL if shown)
- NEG Negative / Absent
- POS Positive / Present
- PQL Practical Quantitation Limit
- PRES Presumptive
- QC Quality Control
- RER Relative Error Ratio (Radiochemistry)
- RL Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Lab Sample ID: 460-303656-1 Matrix: Water

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			05/13/24 09:02	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.37	ug/L			05/13/24 09:02	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.31	ug/L			05/13/24 09:02	1
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			05/13/24 09:02	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			05/13/24 09:02	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			05/13/24 09:02	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.37	ug/L			05/13/24 09:02	1
1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.38	ug/L			05/13/24 09:02	1
1,2-Dichlorobenzene	1.0	U	1.0	0.21	ug/L			05/13/24 09:02	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			05/13/24 09:02	1
1,2-Dichloropropane	1.0	U	1.0	0.35	ug/L			05/13/24 09:02	1
1,3-Dichlorobenzene	1.0	U	1.0	0.34	ug/L			05/13/24 09:02	1
1,4-Dichlorobenzene	1.0	U	1.0	0.33	ug/L			05/13/24 09:02	1
1,4-Dioxane	50	U	50	28	ug/L			05/13/24 09:02	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			05/13/24 09:02	1
2-Hexanone	5.0	U	5.0	1.1	ug/L			05/13/24 09:02	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0		ug/L			05/13/24 09:02	1
Acetone	5.0	U	5.0	4.4	ug/L			05/13/24 09:02	1
Benzene	1.0	U	1.0		ug/L			05/13/24 09:02	1
Bromoform	1.0	U	1.0		ug/L			05/13/24 09:02	1
Bromomethane	1.0	U	1.0	0.55	ug/L			05/13/24 09:02	1
Carbon disulfide	1.0	U	1.0		ug/L			05/13/24 09:02	1
Carbon tetrachloride	1.0	U	1.0		ug/L			05/13/24 09:02	1
Chlorobenzene	1.0	U	1.0		ug/L			05/13/24 09:02	1
Dibromochloromethane	1.0	U	1.0		ug/L			05/13/24 09:02	1
Chloroethane	1.0	U	1.0		ug/L			05/13/24 09:02	1
Chloroform	1.0	U	1.0		ug/L			05/13/24 09:02	1
Chloromethane	1.0	U	1.0		ug/L			05/13/24 09:02	1
cis-1,2-Dichloroethene	1.0		1.0		ug/L			05/13/24 09:02	1
cis-1,3-Dichloropropene	1.0	U	1.0		ug/L			05/13/24 09:02	1
Cyclohexane	1.0	U	1.0		ug/L			05/13/24 09:02	1
Bromodichloromethane	1.0	U	1.0		ug/L			05/13/24 09:02	1
Dichlorodifluoromethane	1.0	U	1.0		ug/L			05/13/24 09:02	1
Ethylbenzene	1.0	U	1.0		ug/L			05/13/24 09:02	1
1,2-Dibromoethane	1.0	U	1.0		ug/L			05/13/24 09:02	1
Isopropylbenzene	1.0	U	1.0		ug/L			05/13/24 09:02	1
Methyl acetate	5.0		5.0		ug/L			05/13/24 09:02	1
Methyl tert-butyl ether	1.0		1.0		ug/L			05/13/24 09:02	1
Methylcyclohexane	1.0		1.0		ug/L			05/13/24 09:02	1
Methylene Chloride	1.0		1.0		ug/L			05/13/24 09:02	1
Styrene	1.0		1.0		ug/L			05/13/24 09:02	1
Tetrachloroethene	1.0		1.0		ug/L			05/13/24 09:02	1
Toluene	1.0		1.0		ug/L			05/13/24 09:02	1
trans-1,2-Dichloroethene	1.0		1.0		ug/L			05/13/24 09:02	1
trans-1,3-Dichloropropene	1.0		1.0		ug/L			05/13/24 09:02	1
Trichloroethene	1.0		1.0		ug/L			05/13/24 09:02	
Trichlorofluoromethane	1.0		1.0		ug/L			05/13/24 09:02	1
Vinyl chloride	1.0		1.0		ug/L			05/13/24 09:02	1
n-Butylbenzene	1.0		1.0		ug/L			05/13/24 09:02	

Lab Sample ID: 460-303656-1 Matrix: Water

Method: SW846 8260D - Vo	latile Organic	Compoun	ds by GC/MS	(Contin	ued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trimethylbenzene	1.0	U	1.0	0.37	ug/L			05/13/24 09:02	1
sec-Butylbenzene	1.0	U	1.0	0.37	ug/L			05/13/24 09:02	1
N-Propylbenzene	1.0	U	1.0	0.32	ug/L			05/13/24 09:02	1
Xylenes, Total	2.0	U	2.0	0.65	ug/L			05/13/24 09:02	1
1,3,5-Trimethylbenzene	1.0	U	1.0	0.33	ug/L			05/13/24 09:02	1
tert-Butylbenzene	1.0	U	1.0	0.34	ug/L			05/13/24 09:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		70 - 128					05/13/24 09:02	1
4-Bromofluorobenzene	98		76 - 120					05/13/24 09:02	1
Dibromofluoromethane (Surr)	103		77 - 132					05/13/24 09:02	1

80 - 120

101

Client Sample ID: EB050724 Date Collected: 05/07/24 09:00

Date Collected: 05/07/24 09:00 Date Received: 05/07/24 19:00

Toluene-d8 (Surr)

Lab Sample ID: 460-303656-2

05/13/24 09:02

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			05/13/24 09:22	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.37	ug/L			05/13/24 09:22	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.31	ug/L			05/13/24 09:22	1
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			05/13/24 09:22	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			05/13/24 09:22	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			05/13/24 09:22	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.37	ug/L			05/13/24 09:22	1
1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.38	ug/L			05/13/24 09:22	1
1,2-Dichlorobenzene	1.0	U	1.0	0.21	ug/L			05/13/24 09:22	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			05/13/24 09:22	1
1,2-Dichloropropane	1.0	U	1.0	0.35	ug/L			05/13/24 09:22	1
1,3-Dichlorobenzene	1.0	U	1.0	0.34	ug/L			05/13/24 09:22	1
1,4-Dichlorobenzene	1.0	U	1.0	0.33	ug/L			05/13/24 09:22	1
1,4-Dioxane	50	U	50	28	ug/L			05/13/24 09:22	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			05/13/24 09:22	1
2-Hexanone	5.0	U	5.0	1.1	ug/L			05/13/24 09:22	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	1.3	ug/L			05/13/24 09:22	1
Acetone	8.7		5.0	4.4	ug/L			05/13/24 09:22	1
Benzene	1.0	U	1.0	0.20	ug/L			05/13/24 09:22	1
Bromoform	1.0	U,	1.0	0.54	ug/L			05/13/24 09:22	1
Bromomethane	1.0	U	1.0	0.55	ug/L			05/13/24 09:22	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			05/13/24 09:22	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			05/13/24 09:22	1
Chlorobenzene	1.0	U	1.0	0.38	ug/L			05/13/24 09:22	1
Dibromochloromethane	1.0	U	1.0	0.28	ug/L			05/13/24 09:22	1
Chloroethane	1.0	U	1.0	0.32	ug/L			05/13/24 09:22	1
Chloroform	1.0	U	1.0	0.33	ug/L			05/13/24 09:22	1
Chloromethane	1.0	U	1.0	0.40	ug/L			05/13/24 09:22	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			05/13/24 09:22	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			05/13/24 09:22	1
Cyclohexane	1.0	U	1.0	0.32	ug/L			05/13/24 09:22	1

Client Sample ID: EB050724

Date Collected: 05/07/24 09:00 Date Received: 05/07/24 19:00

Method: SW846 8260D - V Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Bromodichloromethane	1.0	U	1.0	0.34	ug/L			05/13/24 09:22	1
Dichlorodifluoromethane	1.0	U	1.0	0.31	ug/L			05/13/24 09:22	1
Ethylbenzene	1.0	U	1.0	0.30	ug/L			05/13/24 09:22	1
1,2-Dibromoethane	1.0	U	1.0	0.50	ug/L			05/13/24 09:22	1
Isopropylbenzene	1.0	U	1.0	0.34	ug/L			05/13/24 09:22	1
Methyl acetate	5.0	U	5.0	0.79	ug/L			05/13/24 09:22	1
Methyl tert-butyl ether	1.0	U	1.0	0.22	ug/L			05/13/24 09:22	1
Methylcyclohexane	1.0	U	1.0	0.71	ug/L			05/13/24 09:22	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			05/13/24 09:22	1
Styrene	1.0	U	1.0	0.42	ug/L			05/13/24 09:22	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			05/13/24 09:22	1
Toluene	1.0	U	1.0	0.38	ug/L			05/13/24 09:22	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			05/13/24 09:22	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			05/13/24 09:22	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			05/13/24 09:22	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			05/13/24 09:22	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			05/13/24 09:22	1
n-Butylbenzene	1.0	U	1.0	0.32	ug/L			05/13/24 09:22	1
1,2,4-Trimethylbenzene	1.0	U	1.0	0.37	ug/L			05/13/24 09:22	1
sec-Butylbenzene	1.0	U	1.0	0.37	ug/L			05/13/24 09:22	1
N-Propylbenzene	1.0	U	1.0	0.32	ug/L			05/13/24 09:22	1
Xylenes, Total	2.0	U	2.0	0.65	ug/L			05/13/24 09:22	1
1,3,5-Trimethylbenzene	1.0	U	1.0	0.33	ug/L			05/13/24 09:22	1
tert-Butylbenzene	1.0	U	1.0	0.34	ug/L			05/13/24 09:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
			70 100			-		05/40/04 06 05	

Guiloguie	<i>/////////////////////////////////////</i>	Quumici	Linito	ricpurcu	Analyzea	Dirruc
1,2-Dichloroethane-d4 (Surr)	97		70 - 128		05/13/24 09:22	1
4-Bromofluorobenzene	98		76 - 120		05/13/24 09:22	1
Dibromofluoromethane (Surr)	102		77 - 132		05/13/24 09:22	1
Toluene-d8 (Surr)	102		80 - 120		05/13/24 09:22	1

Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	10	U	10	1.2	ug/L		05/11/24 09:02	05/11/24 22:05	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		05/11/24 09:02	05/11/24 22:05	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		05/11/24 09:02	05/11/24 22:05	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		05/11/24 09:02	05/11/24 22:05	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		05/11/24 09:02	05/11/24 22:05	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		05/11/24 09:02	05/11/24 22:05	1
2,4-Dinitrophenol	40	U	40	2.6	ug/L		05/11/24 09:02	05/11/24 22:05	1
2,4-Dinitrotoluene	10	U	10	1.0	ug/L		05/11/24 09:02	05/11/24 22:05	1
2,6-Dinitrotoluene	2.0	U	2.0	0.83	ug/L		05/11/24 09:02	05/11/24 22:05	1
2-Chloronaphthalene	10	U	10	1.2	ug/L		05/11/24 09:02	05/11/24 22:05	1
2-Chlorophenol	10	U	10	0.38	ug/L		05/11/24 09:02	05/11/24 22:05	1
2-Methylnaphthalene	10	U	10	0.53	ug/L		05/11/24 09:02	05/11/24 22:05	1
2-Methylphenol	10	U	10	0.67	ug/L		05/11/24 09:02	05/11/24 22:05	1
2-Nitroaniline	10	U	10	0.47	ug/L		05/11/24 09:02	05/11/24 22:05	1
2-Nitrophenol	10	U	10	0.75	ug/L		05/11/24 09:02	05/11/24 22:05	1
3,3'-Dichlorobenzidine	10	U	10	1.4	ug/L		05/11/24 09:02	05/11/24 22:05	1
3-Nitroaniline	10	U	10	1.9	ug/L		05/11/24 09:02	05/11/24 22:05	1

Matrix: Water

Eurofins Edison

Job ID: 460-303656-1

Lab Sample ID: 460-303656-2

Lab Sample ID: 460-303656-2 Matrix: Water

Client Sample ID: EB050724 Date Collected: 05/07/24 09:00

Date Received: 05/07/24 19:00

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
4,6-Dinitro-2-methylphenol	20	U	20	3.0	ug/L		05/11/24 09:02	05/11/24 22:05	
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		05/11/24 09:02	05/11/24 22:05	• • • • •
4-Chloro-3-methylphenol	10	U	10	0.58	ug/L		05/11/24 09:02	05/11/24 22:05	
4-Chloroaniline	10	U	10	1.9	ug/L		05/11/24 09:02	05/11/24 22:05	
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		05/11/24 09:02	05/11/24 22:05	
4-Nitroaniline	10	U <mark>J</mark>	10	1.2	ug/L		05/11/24 09:02	05/11/24 22:05	
4-Nitrophenol	20	U	20	4.0	ug/L		05/11/24 09:02	05/11/24 22:05	
Acenaphthene	10	U	10	1.1	ug/L		05/11/24 09:02	05/11/24 22:05	
Acenaphthylene	10	U	10	0.82	ug/L		05/11/24 09:02	05/11/24 22:05	
Acetophenone	10	U	10		ug/L		05/11/24 09:02	05/11/24 22:05	
Anthracene	10	U	10		ug/L		05/11/24 09:02	05/11/24 22:05	
Atrazine	2.0	U	2.0		ug/L		05/11/24 09:02		
Benzaldehyde	10	U	10		ug/L		05/11/24 09:02		
Benzo[a]anthracene	1.0	U	1.0		ug/L		05/11/24 09:02		••••••
Benzo[a]pyrene	1.0	U	1.0	0.41	-		05/11/24 09:02		
Benzo[b]fluoranthene	2.0	U	2.0		ug/L		05/11/24 09:02		
Benzo[g,h,i]perylene	2.0 10	U	10	0.00	ug/L		05/11/24 09:02		
Benzo[k]fluoranthene	1.0	U	1.0		ug/L		05/11/24 09:02		
Bis(2-chloroethoxy)methane	1.0	U	10		ug/L		05/11/24 09:02		
	10	U	1.0		ug/L		05/11/24 09:02		
Bis(2-chloroethyl)ether	2.0	U			-				
Bis(2-ethylhexyl) phthalate			2.0		ug/L		05/11/24 09:02		
Butyl benzyl phthalate	10	U	10		ug/L		05/11/24 09:02		
Caprolactam	10	U/ J	10		ug/L		05/11/24 09:02		-
Carbazole	10	U	10		ug/L		05/11/24 09:02		
Chrysene	2.0	U	2.0		ug/L		05/11/24 09:02		
Dibenz(a,h)anthracene	1.0	U	1.0		ug/L		05/11/24 09:02		
Dibenzofuran	10	U	10	1.1	0		05/11/24 09:02		
Diethyl phthalate	10	U	10		ug/L		05/11/24 09:02	05/11/24 22:05	
Dimethyl phthalate	10	U	10	0.77	ug/L		05/11/24 09:02		
Di-n-butyl phthalate	10	U	10	0.84	0		05/11/24 09:02	05/11/24 22:05	
Di-n-octyl phthalate	10	U	10	0.75	ug/L		05/11/24 09:02	05/11/24 22:05	
Fluoranthene	10	U	10	0.84	ug/L		05/11/24 09:02	05/11/24 22:05	
Fluorene	10	U	10	0.91	ug/L		05/11/24 09:02	05/11/24 22:05	
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		05/11/24 09:02	05/11/24 22:05	
Hexachlorobutadiene	1.0	U	1.0	0.78	ug/L		05/11/24 09:02	05/11/24 22:05	
Hexachlorocyclopentadiene	10	U	10	3.6	ug/L		05/11/24 09:02	05/11/24 22:05	
Hexachloroethane	2.0	U	2.0	0.80	ug/L		05/11/24 09:02	05/11/24 22:05	
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	ug/L		05/11/24 09:02	05/11/24 22:05	
Isophorone	10	U	10	0.80	ug/L		05/11/24 09:02	05/11/24 22:05	
Naphthalene	2.0	U	2.0	0.54	ug/L		05/11/24 09:02	05/11/24 22:05	
Nitrobenzene	1.0	U	1.0		ug/L		05/11/24 09:02	05/11/24 22:05	
N-Nitrosodi-n-propylamine	1.0	U	1.0		ug/L		05/11/24 09:02	05/11/24 22:05	
N-Nitrosodiphenylamine	10		10		ug/L			05/11/24 22:05	
Pentachlorophenol	20		20		ug/L			05/11/24 22:05	
Phenanthrene	10		10		ug/L			05/11/24 22:05	
Phenol	10		10		ug/L			05/11/24 22:05	
Pyrene	10		10		ug/L			05/11/24 22:05	
3 & 4 Methylphenol	10		10		ug/L			05/11/24 22:05	

Surrogate	%Recovery G	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	103		37 - 150	05/11/24 09:02	05/11/24 22:05	1
2-Fluorobiphenyl	95		46 - 139	05/11/24 09:02	05/11/24 22:05	1
2-Fluorophenol (Surr)	53		16_80	05/11/24 09:02	05/11/24 22:05	1
Nitrobenzene-d5 (Surr)	92		51 - 145	05/11/24 09:02	05/11/24 22:05	1
Phenol-d5 (Surr)	37		10_56	05/11/24 09:02	05/11/24 22:05	1
Terphenyl-d14 (Surr)	32		13 - 150	05/11/24 09:02	05/11/24 22:05	1

Client Sample ID: MW-24S Date Collected: 05/07/24 12:40

Date Received: 05/07/24 19:00

Lab Sample ID: 460-303656-3 Matrix: Water

Analyte	Rocult	Qualifier	RL	וחא	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0		1.0		ug/L		Trepared	05/13/24 10:40	1
1,1,2,2-Tetrachloroethane	1.0		1.0		ug/L			05/13/24 10:40	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0		1.0		ug/L			05/13/24 10:40	1
1,1,2-Trichloroethane	1.0		1.0		ug/L			05/13/24 10:40	· 1
1,1-Dichloroethane	1.0		1.0		ug/L			05/13/24 10:40	1
1,1-Dichloroethene	1.0		1.0		ug/L			05/13/24 10:40	1
1,2,4-Trichlorobenzene	1.0		1.0		ug/L			05/13/24 10:40	· · · · · · · 1
1,2-Dibromo-3-Chloropropane	1.0		1.0		ug/L			05/13/24 10:40	1
1,2-Dichlorobenzene	1.0		1.0		ug/L			05/13/24 10:40	1
1,2-Dichloroethane	1.0		1.0		ug/L			05/13/24 10:40	
1,2-Dichloropropane	1.0		1.0		ug/L			05/13/24 10:40	1
1,3-Dichlorobenzene	1.0		1.0		ug/L			05/13/24 10:40	1
1,4-Dichlorobenzene	1.0		1.0		ug/L			05/13/24 10:40	
1,4-Dioxane	50		50		ug/L			05/13/24 10:40	1
2-Butanone (MEK)	5.0		5.0		ug/L			05/13/24 10:40	1
2-Hexanone	5.0		5.0		ug/L			05/13/24 10:40	
4-Methyl-2-pentanone (MIBK)	5.0		5.0		ug/L			05/13/24 10:40	1
Acetone	5.0		5.0		ug/L			05/13/24 10:40	1
Benzene	1.0		1.0		ug/L			05/13/24 10:40	1
Bromoform	1.0		1.0		ug/L			05/13/24 10:40	1
Bromomethane		U *	1.0		ug/L			05/13/24 10:40	1
Carbon disulfide	1.0		1.0		ug/L			05/13/24 10:40	
Carbon tetrachloride	1.0		1.0		ug/L			05/13/24 10:40	1
Chlorobenzene	1.0		1.0		ug/L			05/13/24 10:40	1
Dibromochloromethane	1.0		1.0		ug/L			05/13/24 10:40	· · · · · · · 1
Chloroethane	1.0		1.0		ug/L			05/13/24 10:40	1
Chloroform	1.0	-	1.0		ug/L			05/13/24 10:40	1
Chloromethane	1.0		1.0		ug/L			05/13/24 10:40	· · · · · · 1
cis-1.2-Dichloroethene	1.0		1.0		ug/L			05/13/24 10:40	1
cis-1,3-Dichloropropene	1.0		1.0		ug/L			05/13/24 10:40	1
Cyclohexane	1.0		1.0		ug/L			05/13/24 10:40	
Bromodichloromethane	1.0		1.0		ug/L			05/13/24 10:40	1
Dichlorodifluoromethane	1.0		1.0		ug/L			05/13/24 10:40	1
Ethylbenzene	1.0		1.0		ug/L			05/13/24 10:40	
1,2-Dibromoethane	1.0		1.0		ug/L			05/13/24 10:40	1
Isopropylbenzene	1.0		1.0		ug/L			05/13/24 10:40	1
Methyl acetate	5.0		5.0	0.79				05/13/24 10:40	1

Lab Sample ID: 460-303656-2 Matrix: Water

Client Sample ID: MW-24S

Date Collected: 05/07/24 12:40 Date Received: 05/07/24 19:00

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 460-303656-3 Matrix: Water

05/13/24 10:40

05/13/24 10:40

1

1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	1.0	U	1.0	0.22	ug/L			05/13/24 10:40	1
Methylcyclohexane	1.0	U	1.0	0.71	ug/L			05/13/24 10:40	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			05/13/24 10:40	1
Styrene	1.0	U	1.0	0.42	ug/L			05/13/24 10:40	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			05/13/24 10:40	1
Toluene	1.0	U	1.0	0.38	ug/L			05/13/24 10:40	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			05/13/24 10:40	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			05/13/24 10:40	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			05/13/24 10:40	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			05/13/24 10:40	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			05/13/24 10:40	1
n-Butylbenzene	1.0	U	1.0	0.32	ug/L			05/13/24 10:40	1
1,2,4-Trimethylbenzene	1.0	U	1.0	0.37	ug/L			05/13/24 10:40	1
sec-Butylbenzene	1.0	U	1.0	0.37	ug/L			05/13/24 10:40	1
N-Propylbenzene	1.0	U	1.0	0.32	ug/L			05/13/24 10:40	1
Xylenes, Total	2.0	U	2.0	0.65	ug/L			05/13/24 10:40	1
1,3,5-Trimethylbenzene	1.0	U	1.0	0.33	ug/L			05/13/24 10:40	1
tert-Butylbenzene	1.0	U	1.0	0.34	ug/L			05/13/24 10:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		70 - 128					05/13/24 10:40	1
4-Bromofluorobenzene	98		76 - 120					05/13/24 10:40	1

77 - 132

80 - 120

Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS)

103

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	10	U	10	1.2	ug/L		05/11/24 09:02	05/11/24 22:26	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		05/11/24 09:02	05/11/24 22:26	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		05/11/24 09:02	05/11/24 22:26	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		05/11/24 09:02	05/11/24 22:26	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		05/11/24 09:02	05/11/24 22:26	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		05/11/24 09:02	05/11/24 22:26	1
2,4-Dinitrophenol	40	U	40	2.6	ug/L		05/11/24 09:02	05/11/24 22:26	1
2,4-Dinitrotoluene	10	U	10	1.0	ug/L		05/11/24 09:02	05/11/24 22:26	1
2,6-Dinitrotoluene	2.0	U	2.0	0.83	ug/L		05/11/24 09:02	05/11/24 22:26	1
2-Chloronaphthalene	10	U	10	1.2	ug/L		05/11/24 09:02	05/11/24 22:26	1
2-Chlorophenol	10	U	10	0.38	ug/L		05/11/24 09:02	05/11/24 22:26	1
2-Methylnaphthalene	10	U	10	0.53	ug/L		05/11/24 09:02	05/11/24 22:26	1
2-Methylphenol	10	U	10	0.67	ug/L		05/11/24 09:02	05/11/24 22:26	1
2-Nitroaniline	10	U	10	0.47	ug/L		05/11/24 09:02	05/11/24 22:26	1
2-Nitrophenol	10	U	10	0.75	ug/L		05/11/24 09:02	05/11/24 22:26	1
3,3'-Dichlorobenzidine	10	U	10	1.4	ug/L		05/11/24 09:02	05/11/24 22:26	1
3-Nitroaniline	10	U	10	1.9	ug/L		05/11/24 09:02	05/11/24 22:26	1
4,6-Dinitro-2-methylphenol	20	U	20	3.0	ug/L		05/11/24 09:02	05/11/24 22:26	1
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		05/11/24 09:02	05/11/24 22:26	1
4-Chloro-3-methylphenol	10	U	10	0.58	ug/L		05/11/24 09:02	05/11/24 22:26	1
4-Chloroaniline	10	U	10	1.9	ug/L		05/11/24 09:02	05/11/24 22:26	1
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		05/11/24 09:02	05/11/24 22:26	1
4-Nitroaniline	10	U J	10	1.2	ug/L		05/11/24 09:02	05/11/24 22:26	1

Matrix: Water

Lab Sample ID: 460-303656-3

Client Sample ID: MW-24S

Date Collected: 05/07/24 12:40 Date Received: 05/07/24 19:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	20	U	20	4.0	ug/L		05/11/24 09:02	05/11/24 22:26	1
Acenaphthene	10	U	10	1.1	ug/L		05/11/24 09:02	05/11/24 22:26	1
Acenaphthylene	10	U	10	0.82	ug/L		05/11/24 09:02	05/11/24 22:26	1
Acetophenone	10	U	10	2.3	ug/L		05/11/24 09:02	05/11/24 22:26	1
Anthracene	10	U	10	1.3	ug/L		05/11/24 09:02	05/11/24 22:26	1
Atrazine	2.0	U	2.0	1.3	ug/L		05/11/24 09:02	05/11/24 22:26	1
Benzaldehyde	10	U	10	2.1	ug/L		05/11/24 09:02	05/11/24 22:26	1
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		05/11/24 09:02	05/11/24 22:26	1
Benzo[a]pyrene	1.0	U	1.0	0.41			05/11/24 09:02	05/11/24 22:26	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		05/11/24 09:02	05/11/24 22:26	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		05/11/24 09:02	05/11/24 22:26	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		05/11/24 09:02	05/11/24 22:26	1
Bis(2-chloroethoxy)methane	10	U	10	0.59	ug/L		05/11/24 09:02	05/11/24 22:26	1
Bis(2-chloroethyl)ether	1.0	U	1.0	0.63	ug/L		05/11/24 09:02	05/11/24 22:26	1
Bis(2-ethylhexyl) phthalate	2.0	U	2.0		ug/L		05/11/24 09:02	05/11/24 22:26	1
Butyl benzyl phthalate	10	U	10	0.85	ug/L		05/11/24 09:02	05/11/24 22:26	1
Caprolactam	10	U≯ J	10		ug/L		05/11/24 09:02	05/11/24 22:26	1
Carbazole	10	U	10		ug/L		05/11/24 09:02	05/11/24 22:26	1
Chrysene	2.0	U	2.0		ug/L		05/11/24 09:02	05/11/24 22:26	1
Dibenz(a,h)anthracene	1.0	U	1.0		ug/L		05/11/24 09:02	05/11/24 22:26	1
Dibenzofuran	10	U	10		ug/L		05/11/24 09:02	05/11/24 22:26	1
Diethyl phthalate	10	U	10		ug/L		05/11/24 09:02	05/11/24 22:26	1
Dimethyl phthalate	10	U	10	0.77			05/11/24 09:02	05/11/24 22:26	1
Di-n-butyl phthalate	10	U	10	0.84	ug/L		05/11/24 09:02	05/11/24 22:26	1
Di-n-octyl phthalate	10	U	10	0.75	ug/L		05/11/24 09:02	05/11/24 22:26	1
Fluoranthene	10	U	10		ug/L		05/11/24 09:02	05/11/24 22:26	1
Fluorene	10	U	10	0.91	-		05/11/24 09:02	05/11/24 22:26	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		05/11/24 09:02	05/11/24 22:26	1
Hexachlorobutadiene	1.0	U	1.0		ug/L		05/11/24 09:02	05/11/24 22:26	1
Hexachlorocyclopentadiene	10	U	10		ug/L		05/11/24 09:02		1
Hexachloroethane	2.0	U	2.0		ug/L		05/11/24 09:02	05/11/24 22:26	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0		ug/L		05/11/24 09:02	05/11/24 22:26	1
Isophorone	10	U	10		ug/L		05/11/24 09:02		1
Naphthalene	2.0	U	2.0		ug/L			05/11/24 22:26	1
Nitrobenzene	1.0		1.0		ug/L			05/11/24 22:26	1
N-Nitrosodi-n-propylamine	1.0		1.0		ug/L			05/11/24 22:26	1
N-Nitrosodiphenylamine	10		10		ug/L			05/11/24 22:26	1
Pentachlorophenol	20		20		ug/L			05/11/24 22:26	
Phenanthrene	10		10		ug/L			05/11/24 22:26	1
Phenol	10		10		ug/L			05/11/24 22:26	1
Pyrene	10		10		ug/L			05/11/24 22:26	
3 & 4 Methylphenol	10		10		ug/L			05/11/24 22:26	1
······································				0.01					•
Surrogate	%Recovery	Qualifier	l imits				Prenared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil I
2,4,6-Tribromophenol (Surr)	99	37 - 150	05/11/24 09:02 05	/11/24 22:26	
2-Fluorobiphenyl	89	46 - 139	05/11/24 09:02 05	/11/24 22:26	
2-Fluorophenol (Surr)	49	16 - 80	05/11/24 09:02 05	/11/24 22:26	
Nitrobenzene-d5 (Surr)	89	51 - 145	05/11/24 09:02 05	/11/24 22:26	
Phenol-d5 (Surr)	34	10 - 56	05/11/24 09:02 05	/11/24 22:26	
Terphenyl-d14 (Surr)	26	13 - 150	05/11/24 09:02 05	/11/24 22:26	

Client Sample ID: MW-24D

Date Collected: 05/07/24 12:30 Date Received: 05/07/24 19:00

Lab Sample ID: 460-303656-4 Matrix: Water

Method: SW846 8260D - Vol Analyte		Qualifier			Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<u>1.0</u>				ug/L		Topulou	05/13/24 11:00	1
1,1,2,2-Tetrachloroethane	1.0				ug/L			05/13/24 11:00	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0				ug/L			05/13/24 11:00	1
1,1,2-Trichloroethane	1.0				ug/L			05/13/24 11:00	
1,1-Dichloroethane	1.0				ug/L			05/13/24 11:00	1
1,1-Dichloroethene	1.0				ug/L			05/13/24 11:00	1
1,2,4-Trichlorobenzene	1.0				ug/L			05/13/24 11:00	
1,2-Dibromo-3-Chloropropane	1.0				ug/L			05/13/24 11:00	1
1,2-Dichlorobenzene	1.0				ug/L			05/13/24 11:00	1
1,2-Dichloroethane	1.0				ug/L			05/13/24 11:00	1
1,2-Dichloropropane	1.0				i ug/L			05/13/24 11:00	1
1,3-Dichlorobenzene	1.0				ug/L			05/13/24 11:00	1
1,4-Dichlorobenzene	1.0				ug/L			05/13/24 11:00	1
1,4-Dioxane		U			ug/L			05/13/24 11:00	1
2-Butanone (MEK)	5.0				ug/L			05/13/24 11:00	1
2-Hexanone	5.0				ug/L			05/13/24 11:00	1
4-Methyl-2-pentanone (MIBK)	5.0				ug/L ug/L			05/13/24 11:00	1
Acetone		J.			ug/L			05/13/24 11:00	1
Benzene	<u>4.4</u> 1.0				ug/L ug/L			05/13/24 11:00	1
Bromoform	1.0				ug/L ug/L			05/13/24 11:00	1
		U			ug/L ug/L				
Bromomethane	1.0							05/13/24 11:00	1
Carbon disulfide					ug/L			05/13/24 11:00	1
Carbon tetrachloride	1.0				ug/L			05/13/24 11:00	1
Chlorobenzene	1.0				ug/L			05/13/24 11:00	1
Dibromochloromethane	1.0				ug/L			05/13/24 11:00	1
Chloroethane	1.0	U			ug/L			05/13/24 11:00	1
Chloroform	1.3				ug/L			05/13/24 11:00	1
Chloromethane	1.0				ug/L			05/13/24 11:00	1
cis-1,2-Dichloroethene	1.0				ug/L			05/13/24 11:00	1
cis-1,3-Dichloropropene	1.0				ug/L			05/13/24 11:00	1
Cyclohexane	1.0				ug/L			05/13/24 11:00	1
Bromodichloromethane	1.0				ug/L			05/13/24 11:00	1
Dichlorodifluoromethane	1.0				ug/L			05/13/24 11:00	1
Ethylbenzene	1.0				ug/L			05/13/24 11:00	1
1,2-Dibromoethane	1.0				ug/L			05/13/24 11:00	1
Isopropylbenzene	1.0				ug/L			05/13/24 11:00	1
Methyl acetate	5.0				ug/L			05/13/24 11:00	1
Methyl tert-butyl ether	1.0				ug/L			05/13/24 11:00	1
Methylcyclohexane	1.0				ug/L			05/13/24 11:00	1
Methylene Chloride	1.0				ug/L			05/13/24 11:00	1
Styrene	1.0				ug/L			05/13/24 11:00	1
Tetrachloroethene	1.0				ug/L			05/13/24 11:00	1
Toluene	1.0				ug/L			05/13/24 11:00	1
trans-1,2-Dichloroethene	1.0				ug/L			05/13/24 11:00	1
trans-1,3-Dichloropropene	1.0				ug/L			05/13/24 11:00	1
Trichloroethene	1.0				ug/L			05/13/24 11:00	1
Trichlorofluoromethane	1.0				ug/L			05/13/24 11:00	1
Vinyl chloride	1.0				ug/L			05/13/24 11:00	1
n-Butylbenzene	1.0	U	1	.0 0.32	ug/L			05/13/24 11:00	1

Client Sample ID: MW-24D Date Collected: 05/07/24 12:30

Date Received: 05/07/24 19:00

Toluene-d8 (Surr)

Lab Sample ID: 460-303656-4 Matrix: Water

05/13/24 11:00

1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trimethylbenzene	1.0	U	1.0	0.37	ug/L			05/13/24 11:00	1
sec-Butylbenzene	1.0	U	1.0	0.37	ug/L			05/13/24 11:00	1
N-Propylbenzene	1.0	U	1.0	0.32	ug/L			05/13/24 11:00	1
Xylenes, Total	2.0	U	2.0	0.65	ug/L			05/13/24 11:00	1
1,3,5-Trimethylbenzene	1.0	U	1.0	0.33	ug/L			05/13/24 11:00	1
tert-Butylbenzene	1.0	U	1.0	0.34	ug/L			05/13/24 11:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		70 - 128			-		05/13/24 11:00	1
4-Bromofluorobenzene	98		76 - 120					05/13/24 11:00	1
Dibromofluoromethane (Surr)	101		77 - 132					05/13/24 11:00	1

80 - 120

Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	10	U	10	1.2	ug/L		05/11/24 09:02	05/11/24 22:48	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		05/11/24 09:02	05/11/24 22:48	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		05/11/24 09:02	05/11/24 22:48	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		05/11/24 09:02	05/11/24 22:48	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		05/11/24 09:02	05/11/24 22:48	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		05/11/24 09:02	05/11/24 22:48	1
2,4-Dinitrophenol	40	U	40	2.6	ug/L		05/11/24 09:02	05/11/24 22:48	1
2,4-Dinitrotoluene	10	U	10	1.0	ug/L		05/11/24 09:02	05/11/24 22:48	1
2,6-Dinitrotoluene	2.0	U	2.0	0.83	ug/L		05/11/24 09:02	05/11/24 22:48	1
2-Chloronaphthalene	10	U	10	1.2	ug/L		05/11/24 09:02	05/11/24 22:48	1
2-Chlorophenol	10	U	10	0.38	ug/L		05/11/24 09:02	05/11/24 22:48	1
2-Methylnaphthalene	10	U	10	0.53	ug/L		05/11/24 09:02	05/11/24 22:48	1
2-Methylphenol	10	U	10	0.67	ug/L		05/11/24 09:02	05/11/24 22:48	1
2-Nitroaniline	10	U	10	0.47	ug/L		05/11/24 09:02	05/11/24 22:48	1
2-Nitrophenol	10	U	10	0.75	ug/L		05/11/24 09:02	05/11/24 22:48	1
3,3'-Dichlorobenzidine	10	U	10	1.4	ug/L		05/11/24 09:02	05/11/24 22:48	1
3-Nitroaniline	10	U	10	1.9	ug/L		05/11/24 09:02	05/11/24 22:48	1
4,6-Dinitro-2-methylphenol	20	U	20	3.0	ug/L		05/11/24 09:02	05/11/24 22:48	1
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		05/11/24 09:02	05/11/24 22:48	1
4-Chloro-3-methylphenol	10	U	10	0.58	ug/L		05/11/24 09:02	05/11/24 22:48	1
4-Chloroaniline	10	U	10	1.9	ug/L		05/11/24 09:02	05/11/24 22:48	1
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		05/11/24 09:02	05/11/24 22:48	1
4-Nitroaniline	10	U J	10	1.2	ug/L		05/11/24 09:02	05/11/24 22:48	1
4-Nitrophenol	20	U	20	4.0	ug/L		05/11/24 09:02	05/11/24 22:48	1
Acenaphthene	10	U	10	1.1	ug/L		05/11/24 09:02	05/11/24 22:48	1
Acenaphthylene	10	U	10	0.82	ug/L		05/11/24 09:02	05/11/24 22:48	1
Acetophenone	10	U	10	2.3	ug/L		05/11/24 09:02	05/11/24 22:48	1
Anthracene	10	U	10	1.3	ug/L		05/11/24 09:02	05/11/24 22:48	1
Atrazine	2.0	U	2.0	1.3	ug/L		05/11/24 09:02	05/11/24 22:48	1
Benzaldehyde	10	U	10	2.1	ug/L		05/11/24 09:02	05/11/24 22:48	1
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		05/11/24 09:02	05/11/24 22:48	1
Benzo[a]pyrene	1.0	U	1.0	0.41	ug/L		05/11/24 09:02	05/11/24 22:48	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		05/11/24 09:02	05/11/24 22:48	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		05/11/24 09:02	05/11/24 22:48	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		05/11/24 09:02	05/11/24 22:48	1

Client Sample ID: MW-24D

Date Collected: 05/07/24 12:30 Date Received: 05/07/24 19:00

Terphenyl-d14 (Surr)

Lab Sample ID: 460-303656-4 Matrix: Water

Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS) (Continued) **Result Qualifier** RL MDL Unit D Dil Fac Analyte Prepared Analyzed 10 U 10 Bis(2-chloroethoxy)methane 0.59 ug/L 05/11/24 09:02 05/11/24 22:48 1 1.0 U 1.0 Bis(2-chloroethyl)ether 0.63 ug/L 05/11/24 09:02 05/11/24 22:48 1 2.0 U 2.0 0.80 05/11/24 09:02 05/11/24 22:48 1 Bis(2-ethylhexyl) phthalate ug/L Butyl benzyl phthalate 10 U 10 0.85 ug/L 05/11/24 09:02 05/11/24 22:48 1 Caprolactam 10 U 10 2.2 ug/L 05/11/24 09:02 05/11/24 22:48 1 Carbazole 10 U 10 05/11/24 09:02 05/11/24 22:48 1 0.68 ug/L 2.0 U 2.0 05/11/24 09:02 05/11/24 22:48 1 Chrysene 0.91 ug/L Dibenz(a,h)anthracene 1.0 U 1.0 0.72 ug/L 05/11/24 09:02 05/11/24 22:48 1 Dibenzofuran 10 U 10 05/11/24 09:02 05/11/24 22:48 1.1 ug/L 1 Diethyl phthalate 10 U 10 0.98 ug/L 05/11/24 09:02 05/11/24 22:48 1 10 U 10 05/11/24 09:02 05/11/24 22:48 Dimethyl phthalate 0.77 ug/L 1 Di-n-butyl phthalate 10 U 10 05/11/24 09:02 05/11/24 22:48 1 0.84 ug/L Di-n-octyl phthalate 10 U 10 0.75 ug/L 05/11/24 09:02 05/11/24 22:48 1 Fluoranthene 10 U 10 0.84 ug/L 05/11/24 09:02 05/11/24 22:48 1 Fluorene 10 U 10 0.91 ug/L 05/11/24 09:02 05/11/24 22:48 1 Hexachlorobenzene 1.0 U 1.0 0.40 ug/L 05/11/24 09:02 05/11/24 22:48 1 1.0 U 1.0 0.78 ug/L 05/11/24 09:02 05/11/24 22:48 Hexachlorobutadiene 1 10 U 10 05/11/24 09:02 05/11/24 22:48 Hexachlorocyclopentadiene 3.6 ug/L 1 Hexachloroethane 2.0 U 2.0 0.80 ug/L 05/11/24 09:02 05/11/24 22:48 1 Indeno[1,2,3-cd]pyrene 2.0 U 2.0 0.94 ug/L 05/11/24 09:02 05/11/24 22:48 1 0.80 ug/L Isophorone 10 U 10 05/11/24 09:02 05/11/24 22:48 1 2.0 U 2.0 05/11/24 09:02 05/11/24 22:48 Naphthalene 0.54 ug/L 1 Nitrobenzene 1.0 U 1.0 0.57 ug/L 05/11/24 09:02 05/11/24 22:48 1 N-Nitrosodi-n-propylamine 1.0 U 1.0 0.43 ug/L 05/11/24 09:02 05/11/24 22:48 1 10 U 10 05/11/24 09:02 05/11/24 22:48 N-Nitrosodiphenylamine 0.89 ug/L 1 Pentachlorophenol 20 U 20 1.4 ug/L 05/11/24 09:02 05/11/24 22:48 1 Phenanthrene 10 U 10 05/11/24 09:02 05/11/24 22:48 1.3 ug/L 1 Phenol 10 U 10 0.29 ug/L 05/11/24 09:02 05/11/24 22:48 1 Pyrene 10 U 10 05/11/24 09:02 05/11/24 22:48 1.6 ug/L 1 3 & 4 Methylphenol 10 U 10 05/11/24 09:02 05/11/24 22:48 1 0.64 ug/L %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 37 - 150 2,4,6-Tribromophenol (Surr) 109 05/11/24 09:02 05/11/24 22:48 1 91 2-Fluorobiphenyl 46 - 139 05/11/24 09:02 05/11/24 22:48 1 2-Fluorophenol (Surr) 60 16 - 80 05/11/24 09:02 05/11/24 22:48 1 93 51 - 145 05/11/24 09:02 05/11/24 22:48 Nitrobenzene-d5 (Surr) 1 Phenol-d5 (Surr) 44 10 - 56 05/11/24 09:02 05/11/24 22:48 1

1

05/11/24 09:02 05/11/24 22:48

13 - 150

Eurofins Environment Testing Northeast, LLC

777 New Durham Road Edison NJ 08817

Phone (732) 549-3900 Fax (732) 549-3679

Chain of Custody Record

	Sampler Alyssa R	$\overline{\alpha}$		Lab									Carrie	r Track	ting No)(S):			COC No:		
Citoria Contact	Phone:	AY DOS	.	E-Ma	nore, ail:	, JUN	e		-			·	-						Page:		
Steven Feldman	Phone: 510 - 2	7-74	lelo			more	e@e	t.eur	ofinsi	us.co	m		L_						Page of		
Company: Arcadis of New York, Inc.										Ana	alysis	s Re	quest	ted					Job # 303	688	
Address: 105 Maxess Road Suite N108	Due Date Request	ed:]										and the second second	Preservation Co		
City: Melville	TAT Requested (d	ays): 5 Day			1													and the second	A HCL B NaOH	M Hexane N None	
State. Zip: NY 11747		5 0 4 3	13															and and a second	C Zn Acetate D Nitric Acid E NaHSO4	O AsNaO2 P Na2O4S Q Na2SO3	
Phone: (631) 249-7600	PO #:																	and the second sec	F MeOH G Amchlor H Ascorbic Acid	R Na2S2O3 S H2SO4 T TSP Dode	
Email: Steven Feldman@arcadis.com	WO #: 30205663.04.04	12624			or No	6												and the second se	I Ice J Di Water	U Acetone V MCAA	
<u>Steven, Feldman@arcadis.com</u> Project Name: Former Dangman Park MGP Site	Project #: 30205663.04				(Yes	Or N			Ì			1						containers	K EDTA L EDA	W pH 4- 5 Z other (spe	cify)
Site:	SSOW#:					ž		ļ											Other:		
Former Dangman Park MGP Site					d 3e	ISE								1				er of		- <u></u>	
			Sample Type	Matrix { ^{W=water} S=solid,	Field Filtered	Perform MB/MSD (Ye)	VOCs (8260)	SVOCs (8270)										Total Number			
Sample Identification	Sample Date	Sample Time	(C=comp, G=grab)	Orwasto/ol BT=Tissue, A*Air)	Fleid	Perto	VOCS	SVOC										Total	Special II	nstructions/N	Note:
		\gg		tion Code:	X	100217 80	A							entro da	60020-0 60020-0 60020-0			\mathbb{X}	enter and a second s		en ander
TB050824	5824		G	W	N	N	X											2	1		
EB050824	5 8 24	1110	G	W	М	N	X	X										И	2		
MW-235	5 8 24	1320	G	W	N	М	X	X										5	3		
MW-a3D	5 8 24	1230	G	W	Ч		X	X										5	Ϋ́		
															_						
					\square	_								-							
· · · · · · · · · · · · · · · · · · ·				·····	Ц					_				-							
						_]_						460-3	30368	38 Ch	nain	of Custody		
														1.		1	1.	建物选	L		
Possible Hazard Identification			adiological						rosal To C		ee ma	y K	asses: Dispos	sed it	sam	ples			ed longer than		
Deliverable Requested: 1 II, III IV Other (specify)	п в 7 опкло		adiological								Requ	ireme	nts:	аг Бу	Lap			4/6/1	ive For	Months	
Empty Kit Relinquished by		Date:			Tim	ne:				-			٨	fethod	of Shi	pment;				·····	
Relinquished by: Alyssa R Hynes Relinquished by:	Date/Time: 5/8/24			Company Arcad	ـــــــــــــــــــــــــــــــــــــ	ł		d by	-		2-	/	<u>i</u>	. <u> </u>	J Da	te/Time): -		1532	Company	
Relinquished by:	Datertim	Zee	~	Comparty							to									Company	
Relinquished by:	Date/Time:			Company				ived by		\simeq	~~~				Da	ite/Time	<u>د بم</u> "	ير	20-00	Company	· · · · ·
Custody Seals Intact: Custody Seal No.				<u>i</u> ,,,,,,,		-	Coole	r Tem	peratu	re(s) °	C and (other R	emarks			<u> </u>					
A 100 A NO 1	<u></u>				<u></u>			<u></u>			<u></u>	<u>نىت مۇرى</u>			<u>aa</u>	<u></u>	<u></u>	<u></u>	<u></u>	Ver: 01/16/2	2019

.....

H 1. 2 200

Definitions/Glossary

Client: Arcadis U.S., Inc. Project/Site: Former Dangman Park MGP Site

Job ID: 460-303688-1

Qualifiers

GC/MS VOA	
Qualifier	Qualifier Description
J	Indicates an estimated value.
U	Analyzed for but not detected.
GC/MS Sem	i VOA
Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
E	Compound concentration exceeds the upper level of the calibration range of the instrument for that specific analysis.
U	Analyzed for but not detected.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Client Sample ID: TB050824 Date Collected: 05/08/24 00:00

Date Received: 05/08/24 20:00

Method: SW846 8260D - Volati Analyte		Qualifier	RL	мы	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0		1.0	0.24			Tiepuleu	05/13/24 19:48	1
1,1,2,2-Tetrachloroethane	1.0		1.0	0.37	-			05/13/24 19:48	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0		1.0	0.31	-			05/13/24 19:48	1
1,1,2-Trichloroethane	1.0		1.0		ug/L			05/13/24 19:48	
1,1-Dichloroethane	1.0		1.0	0.26	-			05/13/24 19:48	1
1,1-Dichloroethene	1.0	•	1.0	0.26	-			05/13/24 19:48	1
1,2,4-Trichlorobenzene	1.0		1.0		ug/L			05/13/24 19:48	
1,2-Dibromo-3-Chloropropane	1.0		1.0	0.37	-			05/13/24 19:48	1
1,2-Dichlorobenzene	1.0		1.0		ug/L			05/13/24 19:48	1
1,2-Dichloroethane	1.0		1.0		ug/L			05/13/24 19:48	· · · · · · · · 1
1,2-Dichloropropane	1.0		1.0	0.45	-			05/13/24 19:48	1
1,3-Dichlorobenzene	1.0		1.0	0.33	-			05/13/24 19:48	1
1,4-Dichlorobenzene	1.0		1.0	0.34				05/13/24 19:48	1
1,4-Dioxane	50		50		ug/L			05/13/24 19:48	1
,					-				
2-Butanone (MEK)	5.0 5.0		5.0 5.0		ug/L			05/13/24 19:48 05/13/24 19:48	1
2-Hexanone	5.0 5.0		5.0 5.0		ug/L			05/13/24 19:48	1
4-Methyl-2-pentanone (MIBK)					ug/L				1
Acetone	5.0		5.0		ug/L			05/13/24 19:48	1
Benzene	1.0		1.0		ug/L			05/13/24 19:48	1
Bromoform	1.0		1.0	0.54	-			05/13/24 19:48	1
Bromomethane	1.0		1.0	0.55				05/13/24 19:48	1
Carbon disulfide	1.0		1.0		ug/L			05/13/24 19:48	1
Carbon tetrachloride	1.0		1.0	0.21	-			05/13/24 19:48	1
Chlorobenzene	1.0		1.0		ug/L			05/13/24 19:48	
Dibromochloromethane	1.0		1.0		ug/L			05/13/24 19:48	1
Chloroethane	1.0		1.0	0.32	-			05/13/24 19:48	1
Chloroform	1.0		1.0	0.33				05/13/24 19:48	1
Chloromethane	1.0		1.0		ug/L			05/13/24 19:48	1
cis-1,2-Dichloroethene	1.0		1.0		ug/L			05/13/24 19:48	1
cis-1,3-Dichloropropene	1.0		1.0		ug/L			05/13/24 19:48	1
Cyclohexane	1.0		1.0		ug/L			05/13/24 19:48	1
Bromodichloromethane	1.0		1.0		ug/L			05/13/24 19:48	1
Dichlorodifluoromethane	1.0		1.0		ug/L			05/13/24 19:48	1
Ethylbenzene	1.0		1.0		ug/L			05/13/24 19:48	1
1,2-Dibromoethane	1.0		1.0	0.50	-			05/13/24 19:48	1
Isopropylbenzene	1.0		1.0		ug/L			05/13/24 19:48	1
Methyl acetate	5.0		5.0		ug/L			05/13/24 19:48	1
Methyl tert-butyl ether	1.0		1.0		ug/L			05/13/24 19:48	1
Methylcyclohexane	1.0		1.0		ug/L			05/13/24 19:48	1
Methylene Chloride	1.0		1.0		ug/L			05/13/24 19:48	1
Styrene	1.0		1.0		ug/L			05/13/24 19:48	1
Tetrachloroethene	1.0		1.0		ug/L			05/13/24 19:48	1
Toluene	1.0		1.0		ug/L			05/13/24 19:48	1
trans-1,2-Dichloroethene	1.0		1.0		ug/L			05/13/24 19:48	1
trans-1,3-Dichloropropene	1.0	U	1.0		ug/L			05/13/24 19:48	1
Trichloroethene	1.0	U	1.0		ug/L			05/13/24 19:48	1
Trichlorofluoromethane	1.0	U	1.0		ug/L			05/13/24 19:48	1
Vinyl chloride	1.0	U	1.0		ug/L			05/13/24 19:48	1
n-Butylbenzene	1.0	U	1.0	0.32	ug/L			05/13/24 19:48	1

Lab Sample ID: 460-303688-1 Matrix: Water

Method: SW846 8260D - Volatile Organic Compounds by GC/MS (Continued)

101

103

Client Sample ID: TB050824 Date Collected: 05/08/24 00:00 Date Received: 05/08/24 20:00

Lab Sample ID: 460-303688-1 Matrix: Water

autic organio	Compound		(0011111	lucuj				
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.0	U	1.0	0.37	ug/L			05/13/24 19:48	1
1.0	U	1.0	0.37	ug/L			05/13/24 19:48	1
1.0	U	1.0	0.32	ug/L			05/13/24 19:48	1
2.0	U	2.0	0.65	ug/L			05/13/24 19:48	1
1.0	U	1.0	0.33	ug/L			05/13/24 19:48	1
1.0	U	1.0	0.34	ug/L			05/13/24 19:48	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
116		70 - 128			-		05/13/24 19:48	1
94		76 - 120					05/13/24 19:48	1
	Result 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Result Qualifier 1.0 U 1.0 U	Result Qualifier RL 1.0 U 1.0 2.0 U 2.0 1.0 U 1.0 1.0 The The	Result Qualifier RL MDL 1.0 U 1.0 0.37 1.0 U 1.0 0.37 1.0 U 1.0 0.37 1.0 U 1.0 0.37 1.0 U 1.0 0.32 2.0 U 2.0 0.65 1.0 U 1.0 0.33 1.0 U 1.0 0.33 1.0 U 1.0 0.34 %Recovery Qualifier Limits 70-128 70-128 70-128	1.0 U 1.0 0.37 ug/L 2.0 U 2.0 0.65 ug/L 1.0 U 1.0 0.33 ug/L 1.0 U 1.0 0.34 ug/L %Recovery Qualifier Limits 70 - 128	Result Qualifier RL MDL Unit D 1.0 U 1.0 0.37 ug/L D 1.0 U 1.0 0.32 ug/L D 2.0 U 2.0 0.65 ug/L D 1.0 U 1.0 0.33 ug/L D 1.0 U 1.0 0.33 ug/L D 1.0 U 1.0 0.34 ug/L D WRecovery Qualifier Limits 70 - 128 D D	Result Qualifier RL MDL Unit D Prepared 1.0 U 1.0 0.37 ug/L 10 ug/L 10 <t< td=""><td>Result Qualifier RL MDL Unit D Prepared Analyzed 1.0 U 1.0 0.37 ug/L 0 05/13/24 19:48 1.0 U 1.0 0.37 ug/L 05/13/24 19:48 1.0 U 1.0 0.32 ug/L 05/13/24 19:48 2.0 U 2.0 0.65 ug/L 05/13/24 19:48 1.0 U 1.0 0.33 ug/L 05/13/24 19:48 1.0 U 1.0 0.33 ug/L 05/13/24 19:48 1.0 U 1.0 0.33 ug/L 05/13/24 19:48 1.0 U 1.0 0.34 ug/L 05/13/24 19:48 1.0 U 0.0 0.0 0.</td></t<>	Result Qualifier RL MDL Unit D Prepared Analyzed 1.0 U 1.0 0.37 ug/L 0 05/13/24 19:48 1.0 U 1.0 0.37 ug/L 05/13/24 19:48 1.0 U 1.0 0.32 ug/L 05/13/24 19:48 2.0 U 2.0 0.65 ug/L 05/13/24 19:48 1.0 U 1.0 0.33 ug/L 05/13/24 19:48 1.0 U 1.0 0.33 ug/L 05/13/24 19:48 1.0 U 1.0 0.33 ug/L 05/13/24 19:48 1.0 U 1.0 0.34 ug/L 05/13/24 19:48 1.0 U 0.0 0.0 0.

77 - 132

80 - 120

Client Sample ID: EB050824

Date Collected: 05/08/24 11:10 Date Received: 05/08/24 20:00

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 460-303688-2

05/13/24 19:48

05/13/24 19:48

Matrix: Water

1

Method: SW846 8260D - Volatil	-		-						
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	0.24	-			05/13/24 20:08	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.37	ug/L			05/13/24 20:08	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.31	ug/L			05/13/24 20:08	1
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			05/13/24 20:08	1
1,1-Dichloroethane	1.0	U J	1.0	0.26	ug/L			05/13/24 20:08	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			05/13/24 20:08	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.37	ug/L			05/13/24 20:08	1
1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.38	ug/L			05/13/24 20:08	1
1,2-Dichlorobenzene	1.0	U	1.0	0.21	ug/L			05/13/24 20:08	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			05/13/24 20:08	1
1,2-Dichloropropane	1.0	U	1.0	0.35	ug/L			05/13/24 20:08	1
1,3-Dichlorobenzene	1.0	U	1.0	0.34	ug/L			05/13/24 20:08	1
1,4-Dichlorobenzene	1.0	U	1.0	0.33	ug/L			05/13/24 20:08	1
1,4-Dioxane	50	U	50	28	ug/L			05/13/24 20:08	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			05/13/24 20:08	1
2-Hexanone	5.0	U	5.0	1.1	ug/L			05/13/24 20:08	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	1.3	ug/L			05/13/24 20:08	1
Acetone	5.0	U	5.0	4.4	ug/L			05/13/24 20:08	1
Benzene	1.0	U	1.0	0.20	ug/L			05/13/24 20:08	1
Bromoform	1.0	U	1.0	0.54	ug/L			05/13/24 20:08	1
Bromomethane	1.0	U	1.0	0.55	ug/L			05/13/24 20:08	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			05/13/24 20:08	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			05/13/24 20:08	1
Chlorobenzene	1.0	U	1.0	0.38	ug/L			05/13/24 20:08	1
Dibromochloromethane	1.0	U	1.0	0.28	ug/L			05/13/24 20:08	1
Chloroethane	1.0	U	1.0	0.32	ug/L			05/13/24 20:08	1
Chloroform	1.0	U	1.0	0.33	ug/L			05/13/24 20:08	1
Chloromethane	1.0	U J	1.0	0.40	ug/L			05/13/24 20:08	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			05/13/24 20:08	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			05/13/24 20:08	1
Cyclohexane	1.0	U	1.0	0.32	ug/L			05/13/24 20:08	1

Client Sample ID: EB050824

Date Collected: 05/08/24 11:10 Date Received: 05/08/24 20:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromodichloromethane	1.0	U	1.0	0.34	ug/L			05/13/24 20:08	1
Dichlorodifluoromethane	1.0	U	1.0	0.31	ug/L			05/13/24 20:08	1
Ethylbenzene	1.0	U	1.0	0.30	ug/L			05/13/24 20:08	1
1,2-Dibromoethane	1.0	U	1.0	0.50	ug/L			05/13/24 20:08	1
lsopropylbenzene	1.0	U	1.0	0.34	ug/L			05/13/24 20:08	1
Methyl acetate	5.0	U	5.0	0.79	ug/L			05/13/24 20:08	1
Methyl tert-butyl ether	1.0	U	1.0	0.22	ug/L			05/13/24 20:08	1
Methylcyclohexane	1.0	U	1.0	0.71	ug/L			05/13/24 20:08	1
Methylene Chloride	0.98	J	1.0	0.32	ug/L			05/13/24 20:08	1
Styrene	1.0	U	1.0	0.42	ug/L			05/13/24 20:08	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			05/13/24 20:08	1
Toluene	1.0	U	1.0	0.38	ug/L			05/13/24 20:08	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			05/13/24 20:08	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			05/13/24 20:08	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			05/13/24 20:08	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			05/13/24 20:08	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			05/13/24 20:08	1
n-Butylbenzene	1.0	U	1.0	0.32	ug/L			05/13/24 20:08	1
1,2,4-Trimethylbenzene	1.0	U	1.0	0.37	ug/L			05/13/24 20:08	1
sec-Butylbenzene	1.0	U	1.0	0.37	ug/L			05/13/24 20:08	1
N-Propylbenzene	1.0	U	1.0	0.32	ug/L			05/13/24 20:08	1
Xylenes, Total	2.0	U	2.0	0.65	ug/L			05/13/24 20:08	1
1,3,5-Trimethylbenzene	1.0	U	1.0	0.33	ug/L			05/13/24 20:08	1
tert-Butylbenzene	1.0	U	1.0	0.34	ug/L			05/13/24 20:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
100:11 11 11(0)			70 100			-		05/10/01 00:00	

			· · ·	
1,2-Dichloroethane-d4 (Surr)	117	70 - 128	05/13/24 20:08	1
4-Bromofluorobenzene	94	76 - 120	05/13/24 20:08	1
Dibromofluoromethane (Surr)	102	77 - 132	05/13/24 20:08	1
Toluene-d8 (Surr)	102	80 - 120	05/13/24 20:08	1

Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	10	U	10	1.2	ug/L		05/12/24 09:25	05/12/24 16:08	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		05/12/24 09:25	05/12/24 16:08	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		05/12/24 09:25	05/12/24 16:08	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		05/12/24 09:25	05/12/24 16:08	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		05/12/24 09:25	05/12/24 16:08	1
2,4-Dimethylphenol	10	U,	10	0.62	ug/L		05/12/24 09:25	05/12/24 16:08	1
2,4-Dinitrophenol	40	U <mark>/</mark> J	40	2.6	ug/L		05/12/24 09:25	05/12/24 16:08	1
2,4-Dinitrotoluene	10	U J	10	1.0	ug/L		05/12/24 09:25	05/12/24 16:08	1
2,6-Dinitrotoluene	2.0	U J	2.0	0.83	ug/L		05/12/24 09:25	05/12/24 16:08	1
2-Chloronaphthalene	10	U	10	1.2	ug/L		05/12/24 09:25	05/12/24 16:08	1
2-Chlorophenol	10	U	10	0.38	ug/L		05/12/24 09:25	05/12/24 16:08	1
2-Methylnaphthalene	10	U	10	0.53	ug/L		05/12/24 09:25	05/12/24 16:08	1
2-Methylphenol	10	U	10	0.67	ug/L		05/12/24 09:25	05/12/24 16:08	1
2-Nitroaniline	10	U	10	0.47	ug/L		05/12/24 09:25	05/12/24 16:08	1
2-Nitrophenol	10	U	10	0.75	ug/L		05/12/24 09:25	05/12/24 16:08	1
3,3'-Dichlorobenzidine	10	U	10	1.4	ug/L		05/12/24 09:25	05/12/24 16:08	1
3-Nitroaniline	10	U J	10	1.9	ug/L		05/12/24 09:25	05/12/24 16:08	1

Matrix: Water

Lab Sample ID: 460-303688-2

Lab Sample ID: 460-303688-2

Matrix: Water

Date Collected: 05/08/24 11:10 Date Received: 05/08/24 20:00

Client Sample ID: EB050824

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,6-Dinitro-2-methylphenol	20	U J	20	3.0	ug/L		05/12/24 09:25	05/12/24 16:08	1
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		05/12/24 09:25	05/12/24 16:08	1
4-Chloro-3-methylphenol	10	U	10	0.58	ug/L		05/12/24 09:25	05/12/24 16:08	1
4-Chloroaniline	10	U J	10	1.9	ug/L		05/12/24 09:25	05/12/24 16:08	1
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		05/12/24 09:25	05/12/24 16:08	1
4-Nitroaniline	10	U J	10	1.2	ug/L		05/12/24 09:25	05/12/24 16:08	1
4-Nitrophenol	20	U	20	4.0	ug/L		05/12/24 09:25	05/12/24 16:08	1
Acenaphthene	10	U	10	1.1	ug/L		05/12/24 09:25	05/12/24 16:08	1
Acenaphthylene	10	U	10	0.82	ug/L		05/12/24 09:25	05/12/24 16:08	1
Acetophenone	10	U	10	2.3	ug/L		05/12/24 09:25	05/12/24 16:08	1
Anthracene	10	U	10	1.3	ug/L		05/12/24 09:25	05/12/24 16:08	1
Atrazine	2.0	U 🗡	2.0	1.3	ug/L		05/12/24 09:25	05/12/24 16:08	1
Benzaldehyde	10	U *	10	2.1	ug/L		05/12/24 09:25	05/12/24 16:08	1
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		05/12/24 09:25	05/12/24 16:08	1
Benzo[a]pyrene	1.0	U	1.0	0.41	ug/L		05/12/24 09:25	05/12/24 16:08	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		05/12/24 09:25	05/12/24 16:08	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		05/12/24 09:25	05/12/24 16:08	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		05/12/24 09:25	05/12/24 16:08	1
Bis(2-chloroethoxy)methane	10	U	10	0.59	ug/L		05/12/24 09:25	05/12/24 16:08	1
Bis(2-chloroethyl)ether	1.0	U	1.0	0.63	ug/L		05/12/24 09:25	05/12/24 16:08	1
Bis(2-ethylhexyl) phthalate	2.0	U	2.0	0.80	ug/L		05/12/24 09:25	05/12/24 16:08	1
Butyl benzyl phthalate	10	U	10	0.85	ug/L		05/12/24 09:25	05/12/24 16:08	1
Caprolactam	10	U J	10	2.2	ug/L		05/12/24 09:25	05/12/24 16:08	1
Carbazole	10	U	10	0.68	-		05/12/24 09:25	05/12/24 16:08	1
Chrysene	2.0	U	2.0	0.91	ug/L		05/12/24 09:25	05/12/24 16:08	1
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		05/12/24 09:25	05/12/24 16:08	1
Dibenzofuran	10	U	10		ug/L		05/12/24 09:25	05/12/24 16:08	1
Diethyl phthalate	10	U	10	0.98	ug/L		05/12/24 09:25	05/12/24 16:08	1
Dimethyl phthalate	10	U	10	0.77	ug/L		05/12/24 09:25	05/12/24 16:08	1
Di-n-butyl phthalate	10	U	10	0.84	-		05/12/24 09:25	05/12/24 16:08	1
Di-n-octyl phthalate	10	U	10	0.75	ug/L		05/12/24 09:25	05/12/24 16:08	1
Fluoranthene	10	U	10	0.84			05/12/24 09:25	05/12/24 16:08	•••••
Fluorene	10	U	10	0.91	-		05/12/24 09:25	05/12/24 16:08	1
Hexachlorobenzene	1.0	U	1.0	0.40	-		05/12/24 09:25	05/12/24 16:08	1
Hexachlorobutadiene	1.0	U	1.0	0.78			05/12/24 09:25	05/12/24 16:08	1
Hexachlorocyclopentadiene	10	U	10		ug/L		05/12/24 09:25	05/12/24 16:08	1
Hexachloroethane	2.0	U	2.0	0.80			05/12/24 09:25	05/12/24 16:08	1
Indeno[1,2,3-cd]pyrene	2.0		2.0	0.94				05/12/24 16:08	1
Isophorone	10	U	10	0.80				05/12/24 16:08	1
Naphthalene	2.0	U	2.0	0.54	-			05/12/24 16:08	1
Nitrobenzene	1.0	U	1.0	0.57				05/12/24 16:08	
N-Nitrosodi-n-propylamine	1.0		1.0	0.43				05/12/24 16:08	-
N-Nitrosodiphenylamine	10		10	0.89	-			05/12/24 16:08	1
Pentachlorophenol	20		20		ug/L			05/12/24 16:08	1
Phenanthrene	10	0	10		ug/L			05/12/24 16:08	-
Phenol	10		10	0.29	-			05/12/24 16:08	-
Pyrene	10		10		ug/L			05/12/24 16:08	
3 & 4 Methylphenol	10		10	0.64	-			05/12/24 16:08	

Client Sample Results

Matrix: Water

Client Sample ID: EB050824 Date Collected: 05/08/24 11:10 Date Received: 05/08/24 20:00

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	116	37 - 150	05/12/24 09:25 05/12/24 16:	08 1
2-Fluorobiphenyl	75	46 - 139	05/12/24 09:25 05/12/24 16:	08 1
2-Fluorophenol (Surr)	63	16 - 80	05/12/24 09:25 05/12/24 16:	08 1
Nitrobenzene-d5 (Surr)	87	51 - 145	05/12/24 09:25 05/12/24 16:	08 1
Phenol-d5 (Surr)	44	10 - 56	05/12/24 09:25 05/12/24 16:	08 1
Terphenyl-d14 (Surr)	70	13 - 150	05/12/24 09:25 05/12/24 16:	08 1

Client Sample ID: MW-23S Date Collected: 05/08/24 13:20

Date Received: 05/08/24 20:00

Lab Sample ID: 460-303688-3 Matrix: Water

Lab Sample ID: 460-303688-2

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			05/13/24 21:26	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0		ug/L			05/13/24 21:26	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.31	ug/L			05/13/24 21:26	1
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			05/13/24 21:26	1
1,1-Dichloroethane	1.0	U J	1.0	0.26	ug/L			05/13/24 21:26	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			05/13/24 21:26	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.37	ug/L			05/13/24 21:26	1
1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.38	ug/L			05/13/24 21:26	1
1,2-Dichlorobenzene	1.0	U	1.0	0.21	ug/L			05/13/24 21:26	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			05/13/24 21:26	1
1,2-Dichloropropane	1.0	U	1.0	0.35	ug/L			05/13/24 21:26	1
1,3-Dichlorobenzene	1.0	U	1.0	0.34	ug/L			05/13/24 21:26	1
1,4-Dichlorobenzene	1.0	U	1.0	0.33	ug/L			05/13/24 21:26	1
1,4-Dioxane	50	U	50	28	ug/L			05/13/24 21:26	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			05/13/24 21:26	1
2-Hexanone	5.0	U	5.0	1.1	ug/L			05/13/24 21:26	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	1.3	ug/L			05/13/24 21:26	1
Acetone	5.0	U	5.0	4.4	ug/L			05/13/24 21:26	1
Benzene	1.0	U	1.0	0.20	ug/L			05/13/24 21:26	1
Bromoform	1.0	U	1.0	0.54	ug/L			05/13/24 21:26	1
Bromomethane	1.0	U	1.0	0.55	ug/L			05/13/24 21:26	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			05/13/24 21:26	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			05/13/24 21:26	1
Chlorobenzene	1.0	U	1.0	0.38	ug/L			05/13/24 21:26	1
Dibromochloromethane	1.0	U	1.0	0.28	ug/L			05/13/24 21:26	1
Chloroethane	1.0	U	1.0	0.32	ug/L			05/13/24 21:26	1
Chloroform	51		1.0	0.33	ug/L			05/13/24 21:26	1
Chloromethane	1.0	UJ	1.0	0.40	ug/L			05/13/24 21:26	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			05/13/24 21:26	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			05/13/24 21:26	1
Cyclohexane	1.0	U	1.0	0.32	ug/L			05/13/24 21:26	1
Bromodichloromethane	1.4		1.0	0.34	ug/L			05/13/24 21:26	1
Dichlorodifluoromethane	1.0	U	1.0	0.31	ug/L			05/13/24 21:26	1
Ethylbenzene	1.0	U	1.0	0.30				05/13/24 21:26	1
1,2-Dibromoethane	1.0	U	1.0		ug/L			05/13/24 21:26	1
Isopropylbenzene	1.0	U	1.0	0.34	ug/L			05/13/24 21:26	1
Methyl acetate	5.0	U	5.0		ug/L			05/13/24 21:26	1

Client Sample ID: MW-23S

Date Collected: 05/08/24 13:20 Date Received: 05/08/24 20:00

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 460-303688-3 Matrix: Water

05/13/24 21:26

05/13/24 21:26

1

1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	1.0	U	1.0	0.22	ug/L			05/13/24 21:26	1
Methylcyclohexane	1.0	U	1.0	0.71	ug/L			05/13/24 21:26	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			05/13/24 21:26	1
Styrene	1.0	U	1.0	0.42	ug/L			05/13/24 21:26	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			05/13/24 21:26	1
Toluene	1.0	U	1.0	0.38	ug/L			05/13/24 21:26	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			05/13/24 21:26	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			05/13/24 21:26	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			05/13/24 21:26	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			05/13/24 21:26	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			05/13/24 21:26	1
n-Butylbenzene	1.0	U	1.0	0.32	ug/L			05/13/24 21:26	1
1,2,4-Trimethylbenzene	1.0	U	1.0	0.37	ug/L			05/13/24 21:26	1
sec-Butylbenzene	1.0	U	1.0	0.37	ug/L			05/13/24 21:26	1
N-Propylbenzene	1.0	U	1.0	0.32	ug/L			05/13/24 21:26	1
Xylenes, Total	2.0	U	2.0	0.65	ug/L			05/13/24 21:26	1
1,3,5-Trimethylbenzene	1.0	U	1.0	0.33	ug/L			05/13/24 21:26	1
tert-Butylbenzene	1.0	U	1.0	0.34	ug/L			05/13/24 21:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115		70 - 128					05/13/24 21:26	1
4-Bromofluorobenzene	91		76 - 120					05/13/24 21:26	1

77 - 132

80 - 120

Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS)

101

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	10	U	10	1.2	ug/L		05/12/24 09:25	05/12/24 16:30	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		05/12/24 09:25	05/12/24 16:30	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		05/12/24 09:25	05/12/24 16:30	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		05/12/24 09:25	05/12/24 16:30	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		05/12/24 09:25	05/12/24 16:30	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		05/12/24 09:25	05/12/24 16:30	1
2,4-Dinitrophenol	40	U/J	40	2.6	ug/L		05/12/24 09:25	05/12/24 16:30	1
2,4-Dinitrotoluene	10	U J	10	1.0	ug/L		05/12/24 09:25	05/12/24 16:30	1
2,6-Dinitrotoluene	2.0	U J	2.0	0.83	ug/L		05/12/24 09:25	05/12/24 16:30	1
2-Chloronaphthalene	10	U	10	1.2	ug/L		05/12/24 09:25	05/12/24 16:30	1
2-Chlorophenol	10	U	10	0.38	ug/L		05/12/24 09:25	05/12/24 16:30	1
2-Methylnaphthalene	10	U	10	0.53	ug/L		05/12/24 09:25	05/12/24 16:30	1
2-Methylphenol	10	U	10	0.67	ug/L		05/12/24 09:25	05/12/24 16:30	1
2-Nitroaniline	10	U	10	0.47	ug/L		05/12/24 09:25	05/12/24 16:30	1
2-Nitrophenol	10	U	10	0.75	ug/L		05/12/24 09:25	05/12/24 16:30	1
3,3'-Dichlorobenzidine	10	U	10	1.4	ug/L		05/12/24 09:25	05/12/24 16:30	1
3-Nitroaniline	10	U J	10	1.9	ug/L		05/12/24 09:25	05/12/24 16:30	1
4,6-Dinitro-2-methylphenol	20	U J	20	3.0	ug/L		05/12/24 09:25	05/12/24 16:30	1
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		05/12/24 09:25	05/12/24 16:30	1
4-Chloro-3-methylphenol	10	U	10	0.58	ug/L		05/12/24 09:25	05/12/24 16:30	1
4-Chloroaniline	10	U J	10	1.9	ug/L		05/12/24 09:25	05/12/24 16:30	1
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		05/12/24 09:25	05/12/24 16:30	1
4-Nitroaniline	10	U J	10	1.2	ug/L		05/12/24 09:25	05/12/24 16:30	1

Matrix: Water

Lab Sample ID: 460-303688-3

Client Sample ID: MW-23S

Date Collected: 05/08/24 13:20 Date Received: 05/08/24 20:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	20	U	20	4.0	ug/L		05/12/24 09:25	05/12/24 16:30	1
Acenaphthene	10	U	10	1.1	ug/L		05/12/24 09:25	05/12/24 16:30	1
Acenaphthylene	10	U	10	0.82	ug/L		05/12/24 09:25	05/12/24 16:30	1
Acetophenone	10	U	10	2.3	ug/L		05/12/24 09:25	05/12/24 16:30	1
Anthracene	10	U,	10	1.3	ug/L		05/12/24 09:25	05/12/24 16:30	1
Atrazine	2.0	U	2.0	1.3	ug/L		05/12/24 09:25	05/12/24 16:30	1
Benzaldehyde	10	U/	10	2.1	ug/L		05/12/24 09:25	05/12/24 16:30	1
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		05/12/24 09:25	05/12/24 16:30	1
Benzo[a]pyrene	1.0	U	1.0	0.41	ug/L		05/12/24 09:25	05/12/24 16:30	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		05/12/24 09:25	05/12/24 16:30	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		05/12/24 09:25	05/12/24 16:30	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		05/12/24 09:25	05/12/24 16:30	1
Bis(2-chloroethoxy)methane	10	U	10	0.59	ug/L		05/12/24 09:25	05/12/24 16:30	1
Bis(2-chloroethyl)ether	1.0	U	1.0	0.63	ug/L		05/12/24 09:25	05/12/24 16:30	1
Bis(2-ethylhexyl) phthalate	2.0	U	2.0		ug/L		05/12/24 09:25	05/12/24 16:30	1
Butyl benzyl phthalate	10	U	10	0.85	ug/L		05/12/24 09:25	05/12/24 16:30	1
Caprolactam	10	UJ	10	2.2	ug/L		05/12/24 09:25	05/12/24 16:30	1
Carbazole	10	U	10	0.68	ug/L		05/12/24 09:25	05/12/24 16:30	1
Chrysene	2.0	U	2.0	0.91	ug/L		05/12/24 09:25	05/12/24 16:30	1
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		05/12/24 09:25	05/12/24 16:30	1
Dibenzofuran	10	U	10	1.1	ug/L		05/12/24 09:25	05/12/24 16:30	1
Diethyl phthalate	10	U	10	0.98	ug/L		05/12/24 09:25	05/12/24 16:30	1
Dimethyl phthalate	10	U	10	0.77	ug/L		05/12/24 09:25	05/12/24 16:30	1
Di-n-butyl phthalate	10	U	10	0.84	ug/L		05/12/24 09:25	05/12/24 16:30	1
Di-n-octyl phthalate	10	U	10	0.75	ug/L		05/12/24 09:25	05/12/24 16:30	1
Fluoranthene	10	U	10	0.84	ug/L		05/12/24 09:25	05/12/24 16:30	1
Fluorene	10	U	10	0.91	ug/L		05/12/24 09:25	05/12/24 16:30	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		05/12/24 09:25	05/12/24 16:30	1
Hexachlorobutadiene	1.0	U	1.0	0.78	ug/L		05/12/24 09:25	05/12/24 16:30	1
Hexachlorocyclopentadiene	10	U	10	3.6	ug/L		05/12/24 09:25	05/12/24 16:30	1
Hexachloroethane	2.0	U	2.0	0.80	ug/L		05/12/24 09:25	05/12/24 16:30	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	ug/L		05/12/24 09:25	05/12/24 16:30	1
Isophorone	10	U	10	0.80	ug/L		05/12/24 09:25	05/12/24 16:30	1
Naphthalene	2.0	U	2.0	0.54	ug/L		05/12/24 09:25	05/12/24 16:30	1
Nitrobenzene	1.0	U	1.0	0.57	ug/L		05/12/24 09:25	05/12/24 16:30	1
N-Nitrosodi-n-propylamine	1.0	U	1.0	0.43	ug/L		05/12/24 09:25	05/12/24 16:30	1
N-Nitrosodiphenylamine	10	U	10	0.89	ug/L		05/12/24 09:25	05/12/24 16:30	1
Pentachlorophenol	20	U J	20	1.4	ug/L		05/12/24 09:25	05/12/24 16:30	1
Phenanthrene	10	U	10	1.3	ug/L		05/12/24 09:25	05/12/24 16:30	1
Phenol	10	U	10	0.29	ug/L		05/12/24 09:25	05/12/24 16:30	1
Pyrene	10	U	10	1.6	ug/L		05/12/24 09:25	05/12/24 16:30	1
3 & 4 Methylphenol	10	U	10	0.64	ug/L		05/12/24 09:25	05/12/24 16:30	1
Surrogate	%Recovery	0 115	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	112	37 - 150	05/12/24 09:25	05/12/24 16:30	1
2-Fluorobiphenyl	77	46 - 139	05/12/24 09:25	05/12/24 16:30	1
2-Fluorophenol (Surr)	61	16_80	05/12/24 09:25	05/12/24 16:30	1
Nitrobenzene-d5 (Surr)	83	51 - 145	05/12/24 09:25	05/12/24 16:30	1
Phenol-d5 (Surr)	43	10 - 56	05/12/24 09:25	05/12/24 16:30	1
Terphenyl-d14 (Surr)	67	13 - 150	05/12/24 09:25	05/12/24 16:30	1

Lab Sample ID: 460-303688-4 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			05/14/24 09:38	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.37	ug/L			05/14/24 09:38	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.31	ug/L			05/14/24 09:38	1
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			05/14/24 09:38	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			05/14/24 09:38	1
I,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			05/14/24 09:38	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.37	ug/L			05/14/24 09:38	1
I,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.38	ug/L			05/14/24 09:38	1
I,2-Dichlorobenzene	1.0	U	1.0	0.21	ug/L			05/14/24 09:38	1
,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			05/14/24 09:38	1
,2-Dichloropropane	1.0	U	1.0	0.35	ug/L			05/14/24 09:38	1
,3-Dichlorobenzene	1.0	U	1.0	0.34	ug/L			05/14/24 09:38	1
,4-Dichlorobenzene	1.0	U	1.0	0.33	ug/L			05/14/24 09:38	1
1,4-Dioxane	50	U	50	28	ug/L			05/14/24 09:38	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			05/14/24 09:38	1
2-Hexanone	5.0	U	5.0	1.1	ug/L			05/14/24 09:38	1
1-Methyl-2-pentanone (MIBK)	5.0	U	5.0	1.3	ug/L			05/14/24 09:38	1
Acetone	5.0	U	5.0	4.4	ug/L			05/14/24 09:38	1
Benzene	1.0	U	1.0	0.20	ug/L			05/14/24 09:38	1
Bromoform	1.0	U	1.0	0.54	ug/L			05/14/24 09:38	1
Bromomethane	1.0	U	1.0	0.55	ug/L			05/14/24 09:38	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			05/14/24 09:38	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			05/14/24 09:38	1
Chlorobenzene	1.0	U	1.0	0.38	ug/L			05/14/24 09:38	1
Dibromochloromethane	1.0	U	1.0	0.28	ug/L			05/14/24 09:38	1
Chloroethane	1.0	U	1.0	0.32	ug/L			05/14/24 09:38	1
Chloroform	0.67	J	1.0	0.33	ug/L			05/14/24 09:38	1
Chloromethane	1.0		1.0		ug/L			05/14/24 09:38	1
is-1,2-Dichloroethene	1.0	-	1.0		ug/L			05/14/24 09:38	1
is-1,3-Dichloropropene	1.0	U	1.0		ug/L			05/14/24 09:38	1
Cyclohexane	1.0	U	1.0		ug/L			05/14/24 09:38	1
Bromodichloromethane	1.0	U	1.0		ug/L			05/14/24 09:38	1
Dichlorodifluoromethane	1.0	U	1.0		ug/L			05/14/24 09:38	1
Ethylbenzene	1.0	U	1.0		ug/L			05/14/24 09:38	1
,2-Dibromoethane	1.0	U	1.0		ug/L			05/14/24 09:38	1
sopropylbenzene	1.0	U	1.0		ug/L			05/14/24 09:38	1
Aethyl acetate	5.0		5.0		ug/L			05/14/24 09:38	1
Aethyl tert-butyl ether	1.0		1.0		ug/L			05/14/24 09:38	1
/lethylcyclohexane	1.0		1.0		ug/L			05/14/24 09:38	1
Aethylene Chloride	1.0 0.34		UB 1.0		ug/L			05/14/24 09:38	1
Styrene	1.0		1.0		ug/L			05/14/24 09:38	1
etrachloroethene	1.0		1.0		ug/L			05/14/24 09:38	1
oluene	1.0		1.0		ug/L			05/14/24 09:38	1
ans-1,2-Dichloroethene	1.0		1.0		ug/L			05/14/24 09:38	1
rans-1,3-Dichloropropene	1.0		1.0		ug/L			05/14/24 09:38	1
richloroethene	1.0		1.0		ug/L			05/14/24 09:38	1
richlorofluoromethane	1.0		1.0		ug/L			05/14/24 09:38	1
/inyl chloride	1.0		1.0		ug/L			05/14/24 09:38	. 1
n-Butylbenzene	1.0		1.0		ug/L			05/14/24 09:38	· · · · · · · · 1

1

Client Sample ID: MW-23D Date Collected: 05/08/24 12:30 Date Received: 05/08/24 20:00

Toluene-d8 (Surr)

Lab Sample ID: 460-303688-4 **Matrix: Water**

05/14/24 09:38

Method: SW846 8260D - Vo Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trimethylbenzene	1.0	U	1.0	0.37	ug/L			05/14/24 09:38	1
sec-Butylbenzene	1.0	U	1.0	0.37	ug/L			05/14/24 09:38	1
N-Propylbenzene	1.0	U	1.0	0.32	ug/L			05/14/24 09:38	1
Xylenes, Total	2.0	U	2.0	0.65	ug/L			05/14/24 09:38	1
1,3,5-Trimethylbenzene	1.0	U	1.0	0.33	ug/L			05/14/24 09:38	1
tert-Butylbenzene	1.0	U	1.0	0.34	ug/L			05/14/24 09:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			70 - 128					05/14/24 09:38	1
4-Bromofluorobenzene	94		76 - 120					05/14/24 09:38	1
Dibromofluoromethane (Surr)	100		77 - 132					05/14/24 09:38	1

80 - 120

Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	10	U	10	1.2	ug/L		05/12/24 09:25	05/12/24 16:51	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		05/12/24 09:25	05/12/24 16:51	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		05/12/24 09:25	05/12/24 16:51	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		05/12/24 09:25	05/12/24 16:51	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		05/12/24 09:25	05/12/24 16:51	1
2,4-Dimethylphenol	10		10	0.62	ug/L		05/12/24 09:25	05/12/24 16:51	1
2,4-Dinitrophenol	40	U J	40	2.6	ug/L		05/12/24 09:25	05/12/24 16:51	1
2,4-Dinitrotoluene	10	U J	10	1.0	ug/L		05/12/24 09:25	05/12/24 16:51	1
2,6-Dinitrotoluene	2.0	U J	2.0	0.83	ug/L		05/12/24 09:25	05/12/24 16:51	1
2-Chloronaphthalene	10	U	10	1.2	ug/L		05/12/24 09:25	05/12/24 16:51	1
2-Chlorophenol	10	U	10	0.38	ug/L		05/12/24 09:25	05/12/24 16:51	1
2-Methylnaphthalene	10	U	10	0.53	ug/L		05/12/24 09:25	05/12/24 16:51	1
2-Methylphenol	10	U	10	0.67	ug/L		05/12/24 09:25	05/12/24 16:51	1
2-Nitroaniline	10	U	10	0.47	ug/L		05/12/24 09:25	05/12/24 16:51	1
2-Nitrophenol	10	U	10	0.75	ug/L		05/12/24 09:25	05/12/24 16:51	1
3,3'-Dichlorobenzidine	10	U	10	1.4	ug/L		05/12/24 09:25	05/12/24 16:51	1
3-Nitroaniline	10	U J	10	1.9	ug/L		05/12/24 09:25	05/12/24 16:51	1
4,6-Dinitro-2-methylphenol	20	U J	20	3.0	ug/L		05/12/24 09:25	05/12/24 16:51	1
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		05/12/24 09:25	05/12/24 16:51	1
4-Chloro-3-methylphenol	10	U	10	0.58	ug/L		05/12/24 09:25	05/12/24 16:51	1
4-Chloroaniline	10	U J	10	1.9	ug/L		05/12/24 09:25	05/12/24 16:51	1
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		05/12/24 09:25	05/12/24 16:51	1
4-Nitroaniline	10	UJ	10	1.2	ug/L		05/12/24 09:25	05/12/24 16:51	1
4-Nitrophenol	20	U	20	4.0	ug/L		05/12/24 09:25	05/12/24 16:51	1
Acenaphthene	10	U	10	1.1	ug/L		05/12/24 09:25	05/12/24 16:51	1
Acenaphthylene	10	U	10	0.82	ug/L		05/12/24 09:25	05/12/24 16:51	1
Acetophenone	10	U	10	2.3	ug/L		05/12/24 09:25	05/12/24 16:51	1
Anthracene	10	U	10	1.3	ug/L		05/12/24 09:25	05/12/24 16:51	1
Atrazine	2.0	U	2.0	1.3	ug/L		05/12/24 09:25	05/12/24 16:51	1
Benzaldehyde	10	Ú/	10	2.1	ug/L		05/12/24 09:25	05/12/24 16:51	1
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		05/12/24 09:25	05/12/24 16:51	1
Benzo[a]pyrene	1.0	U	1.0	0.41	ug/L		05/12/24 09:25	05/12/24 16:51	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		05/12/24 09:25	05/12/24 16:51	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		05/12/24 09:25	05/12/24 16:51	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		05/12/24 09:25	05/12/24 16:51	1

Lab Sample ID: 460-303688-4 Matrix: Water

Client Sample ID: MW-23D

Date Collected: 05/08/24 12:30 Date Received: 05/08/24 20:00

Terphenyl-d14 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-chloroethoxy)methane	10	U	10	0.59	ug/L		05/12/24 09:25	05/12/24 16:51	1
Bis(2-chloroethyl)ether	1.0	U	1.0	0.63	ug/L		05/12/24 09:25	05/12/24 16:51	1
Bis(2-ethylhexyl) phthalate	2.0	U	2.0	0.80	ug/L		05/12/24 09:25	05/12/24 16:51	1
Butyl benzyl phthalate	10	U	10	0.85	ug/L		05/12/24 09:25	05/12/24 16:51	1
Caprolactam	10	U J	10	2.2	ug/L		05/12/24 09:25	05/12/24 16:51	1
Carbazole	10	U	10	0.68	ug/L		05/12/24 09:25	05/12/24 16:51	1
Chrysene	2.0	U	2.0	0.91	ug/L		05/12/24 09:25	05/12/24 16:51	1
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		05/12/24 09:25	05/12/24 16:51	1
Dibenzofuran	10	U	10	1.1	ug/L		05/12/24 09:25	05/12/24 16:51	1
Diethyl phthalate	10	U	10	0.98	ug/L		05/12/24 09:25	05/12/24 16:51	1
Dimethyl phthalate	10	U	10	0.77	ug/L		05/12/24 09:25	05/12/24 16:51	1
Di-n-butyl phthalate	10	U	10	0.84	ug/L		05/12/24 09:25	05/12/24 16:51	1
Di-n-octyl phthalate	10	U	10	0.75	ug/L		05/12/24 09:25	05/12/24 16:51	1
Fluoranthene	10	U	10	0.84	ug/L		05/12/24 09:25	05/12/24 16:51	1
Fluorene	10	U	10	0.91	ug/L		05/12/24 09:25	05/12/24 16:51	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		05/12/24 09:25	05/12/24 16:51	1
Hexachlorobutadiene	1.0	U	1.0	0.78	ug/L		05/12/24 09:25	05/12/24 16:51	1
Hexachlorocyclopentadiene	10	U	10	3.6	ug/L		05/12/24 09:25	05/12/24 16:51	1
Hexachloroethane	2.0	U	2.0	0.80	ug/L		05/12/24 09:25	05/12/24 16:51	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	ug/L		05/12/24 09:25	05/12/24 16:51	1
Isophorone	10	U	10	0.80	ug/L		05/12/24 09:25	05/12/24 16:51	1
Naphthalene	2.0	U	2.0	0.54	ug/L		05/12/24 09:25	05/12/24 16:51	1
Nitrobenzene	1.0	U	1.0	0.57	ug/L		05/12/24 09:25	05/12/24 16:51	1
N-Nitrosodi-n-propylamine	1.0	U	1.0	0.43	ug/L		05/12/24 09:25	05/12/24 16:51	1
N-Nitrosodiphenylamine	10	-	10	0.89	ug/L		05/12/24 09:25	05/12/24 16:51	1
Pentachlorophenol	20	U J	20	1.4	ug/L		05/12/24 09:25	05/12/24 16:51	1
Phenanthrene	10	U	10	1.3	ug/L		05/12/24 09:25	05/12/24 16:51	1
Phenol	10	U	10	0.29	ug/L		05/12/24 09:25	05/12/24 16:51	1
Pyrene	10	U	10	1.6	ug/L		05/12/24 09:25	05/12/24 16:51	1
3 & 4 Methylphenol	10	U	10	0.64	ug/L		05/12/24 09:25	05/12/24 16:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	118		37 - 150					05/12/24 16:51	1
2-Fluorobiphenyl	71		46 - 139				05/12/24 09:25	05/12/24 16:51	1
2-Fluorophenol (Surr)	48		16 - 80				05/12/24 09:25	05/12/24 16:51	1
Nitrobenzene-d5 (Surr)	86		51 - 145				05/12/24 09:25	05/12/24 16:51	1
Phenol-d5 (Surr)	31		10 - 56				05/12/24 09:25	05/12/24 16:51	1

1

05/12/24 09:25 05/12/24 16:51

13 - 150

National Grid-Former Dangman Park MGP Site

Data Usability Summary Report (DUSR)

Brooklyn, New York

Volatile Organic Compound and Semi-Volatile Organic Compounds Analyses

SDGs # 460-303613-1 and 460-303677-1

Analyses Performed By: Eurofins Test America Edison, New Jersey

Report #: 54419R Review Level: Tier III Project: 30205663.04

Summary

This data quality assessment summarizes the review of Sample Delivery Groups (SDGs) #460-303613-1 and 460-303677-1 for samples collected in association with the Former Dangman Park MGP site, Brooklyn, New York. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

SDG Number	Sample ID	Lab ID	Matrix	Sample	Parent	Analysis				
SDG Number	Sample ID		Matrix	Collection Date	Sample	voc	VOC SVOC PCB	РСВ	MET	MISC
	TB050924	460-303613-1	Water	5/09/2024		Х				
	EB050924	460-303613-2	Water	5/09/2024		х	Х			
460-303613-1	MW-22S	460-303613-3	Groundwater	5/09/2024		Х	Х			
	MW-22D	460-303613-4	Groundwater	5/09/2024		х	Х			
	MW-21S	460-303613-5	Groundwater	5/09/2024		Х	Х			
	TB051024	460-303677-1	Water	5/10/2024		х				
460 202677 1	EB051024	460-303677-2	Water	5/10/2024		х	Х			
460-303677-1	MW-21D	460-303677-3	Groundwater	5/10/2024		Х	Х			
	DUP051024	460-303677-4	Groundwater	5/10/2024	MW-21D	Х	Х			

Note:

1. SDG 460-303613-1: The matrix spike/matrix spike duplicate (MS/MSD) analyses were performed on sample location MW-21S for VOC and SVOC analyses.

Analytical Data Package Documentation

The table below evaluates the data package completeness.

Rep	orted			Not Required
No	Yes	No	Yes	Nequireu
	x		Х	
	Х		Х	
	Х		Х	
	Х		Х	
	Х		Х	
	Х		Х	
	Х		Х	
	Х		Х	
	X		Х	
	X		Х	
	X		Х	1
	X		Х	
		X X <td< td=""><td>Reported Accel No Yes No X X X</td><td>NoYesNoYesNoYesNoYesXX</td></td<>	Reported Accel No Yes No X X X	NoYesNoYesNoYesNoYesXX

Note:

QA Quality assurance

Organic Analysis Introduction

Analyses were performed according to United States Environmental Protection Agency USEPA) SW-846 Methods 8260D and 8270E. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, EPA 540/R-99/008, October 1999, as appropriate).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound is considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if

it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Volatile Organic Compound (VOC) Analyses

1. Holding Times

The specified holding times for the following methods are presented in the table below.

Method	Matrix	Holding Time	Preservation
SW-846 8260D	Water	14 days from collection to analysis(preserved)7 days from collection to analysis (non-preserved)	Cool to <6 °C; preserved to a pH of less than 2 s.u.

Note:

s.u. Standard units

All samples were analyzed within the specified holding time criterion.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

In both SDGs, compounds were detected in the associated QA blanks; however, the associated sample results were greater than the BAL and/or were non-detect. No qualification of the sample results was required.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable, and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/ Continuing	Compound	Criteria
<u>SDG 460-303613-1:</u> TB050924 EB050924 MW-22S MW-22D MW-21S	CCV %D	1,2-Dibromo-3-chloropropane	-23.7%
<u>SDG 460-303677-1:</u> TB051024 EB051024	CCV %D	Dichlorodifluoromethane Bromoform	-27.0% -23.8%
MW-21D DUP051024		1,2-Dibromo-3-Chloropropane	-33.6%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
Initial and Continuing Calibration		Detect	J
	RRF <0.01 ¹	Non-detect	R

Initial/Continuing	Criteria	Sample Result	Qualification
		Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
		Detect	
	%RSD > 20% or a correlation coefficient <0.99	Non-detect	UJ
Initial Calibration		Detect	J
	%RSD >90%	Non-detect	R
		Detect	J
	%D >20% (increase or decrease in sensitivity)	Non-detect	UJ
Continuing Calibration		Detect	J
	%D >90% (increase/decrease in sensitivity)	Non-detect	R
		Detect	J

Note:

¹ RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

SDG 460-303613-1: The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

SDG 460-303677-1: A MS/MSD was not performed on a sample location associated with this SDG.

8. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the LCS/LCSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

SDG 460-303613-1: All compounds associated with the LCS/LCSD analysis exhibited recoveries and RPDs within the control limits.

Sample locations associated with LCS/LCSD analysis exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	LCS Recovery	LCSD Recovery
SDG 460-303677-1:			
TB051024 EB051024 MW-21D DUP051024	Bromomethane	AC	>UL

The criteria used to evaluate the LCS/LCSD recoveries are presented in the following table. In the case of an LCS/LCSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
	Detect	J
< the lower control limit (LL) but > 10%	Non-detect	UJ
	Detect	J
< 10%	Non-detect	R

Control Limit	Sample Result	Qualification
	Detect	J

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

SDG 460-303613-1: A field duplicate was not collected along with a sample location associated this SDG.

Results for duplicate samples are summarized in the following table.

Sample ID/ Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
SDG 460-303677-1:				
MW-21D/	Chloroform	1.7	1.7	AC
DUP051024				
Note:		1		

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

Data Validation Checklist for Volatiles

VOCs: SW-846 8260D	Rep	oorted		ormance eptable	Not Required
		Yes	No	Yes	Nequireu
GAS CHROMATOGRAPHY/MASS SPECTROMETRY	(GC/MS)				
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks				_	1
A. Method blanks		X		Х	
B. Equipment blanks		Х	Х		
C. Trip blanks		Х		Х	
Laboratory Control Sample (LCS) %R		X		Х	
Laboratory Control Sample Duplicate (LCSD) %R		Х	Х		
LCS/LCSD Precision (RPD)		X		Х	
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		X		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		X		Х	
Surrogate Spike %R		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		X		Х	
Initial calibration %RSDs		X		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		

Re	Reported		Performance Acceptable	
No	Yes	No	Yes	Required
′ (GC/MS	;)			
	X		х	
	X		Х	
	X		Х	
	Х		Х	
	X		Х	
	x		Х	
	X		Х	
	Х		Х	
	No	NoYes(GC/MS)(GC/MS)XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Reported Accept No Yes No Yes (GC/MS) X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I	Reported Acceptable No Yes No Yes No Yes (GC/MS) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

Semivolatile Organic Compound (SVOC) Analyses

1. Holding Times

The specified holding times for the following methods are presented in the table below.

Method	Matrix	Holding Time	Preservation
SW-846 8270E	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C

All samples were analyzed within the specified holding time criterion.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/ Continuing	Compound	Criteria
SDG 460-303613-1:			
		4-Chloroaniline	+23.5%
		Caprolactam	+28.9%
		2,6-Dinitrotoluene	+22.1%
		3-Nitroaniline	+29.3%
MW-21S		2,4-Dinitrophenol	+40.8%
	CCV %D	2,4-Dinitrotoluene	+33.0%
		4-Nitroaniline	+28.7%
		4,6-Dinitro-2-methylphenol	+28.0%
		Pentachlorophenol	+26.8%
EB050924 MW-22S MW-22D		4-Chloroaniline	-23.7%
SDG 460-303677-1:			I
		4-Chloroaniline	+23.5%
		Caprolactam	+28.9%
		2,6-Dinitrotoluene	+22.1%
EB051024		3-Nitroaniline	+29.3%
MW-21D DUP051024	CCV %D	2,4-Dinitrophenol	+40.8%
20.001021		2,4-Dinitrotoluene	+33.0%
		4-Nitroaniline	+28.7%
		4,6-Dinitro-2-methylphenol	+28.0%

Sample Locations	Initial/ Continuing	Compound	Criteria
		Pentachlorophenol	+26.8%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
		Detect	J
Initial and Continuing	RRF <0.01 ¹	Non-detect	R
Calibration		Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
		Detect	NO ACION
	%RSD > 20% or a correlation coefficient <0.99	Non-detect	UJ
Initial Calibration		Detect	J
	%RSD >90%	Non-detect	R
	/010/ 20/0	Detect	J
	%D >20% (increase or decrease in sensitivity)	Non-detect	UJ
Continuing Calibration		Detect	J
	%D >90% (increase/decrease in sensitivity)	Non-detect	R
		Detect	J

Note:

¹ RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

SDG 460-303677-1: A MS/MSD was not performed on a sample location associated with this SDG.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery
<u>SDG 460-303613-1:</u> MW-21S	3.3'-Dichlorobenzidine	<ll but="">10%</ll>	<ll but="">10%</ll>

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification	
> the upper control limit (UL)	Non-detect	No Action	
	Detect	J	
a the lower centrel limit (11) but > 10%	Non-detect	UJ	
< the lower control limit (LL) but > 10%	Detect	J	
< 10%	Non-detect	R	
< 10%	Detect Detect Detect Detect Detect Detect	J	
Parent sample concentration > four times the MS/MSD spiking solution	Detect	No Action	
concentration.	Non-detect	No Action	

8. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the LCS/LCSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Sample locations associated with LCS/LCSD analysis exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	LCS Recovery	LCSD Recovery
<u>SDG 460-303613-1:</u>			
	2,4-Dinitrophenol	>UL	>UL
MW-21S	Atrazine	>UL	>UL
	Benzaldehyde	>UL	>UL
SDG 460-303677-1:	-		
EB051024	2,4-Dinitrophenol	>UL	>UL
MW-21D	Atrazine	>UL	>UL
DUP051024	Benzaldehyde	>UL	>UL

The criteria used to evaluate the LCS/LCSD recoveries are presented in the following table. In the case of an LCS/LCSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
	Detect	J
< the lower control limit (LL) but > 10%	Non-detect	UJ
	Detect	J
< 10%	Non-detect	R
	Detect	J

Sample locations associated with LCS/LCSD recoveries exhibiting an RPD greater than of the control limit presented in the following table.

Sample Locations	Compound
<u>SDG 460-303613-1:</u>	
EB050924	
MW-22S	Caprolactam
MW-22D	

The criteria used to evaluate the RPD between the LCS/LCSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	UJ
	Detect	J

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

SDG 460-303613-1: A field duplicate was not collected along with a sample location associated this SDG.

Results for duplicate samples are summarized in the following table.

Sample ID/ Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
SDG 460-303677-1:				
MW-21D/	All target compounds	U	U	AC
DUP051024				

Notes:

U Non-detect

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

Data Validation Checklist for Semi-Volatiles

SVOCs: SW-846 8270E		eported	Perfo Acc	Not	
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/MS	5)			
Tier II Validation					
Holding times		X		Х	
Reporting limits (units)		X		Х	
Blanks		I	I		1
A. Method blanks		X		X	
B. Equipment blanks		X		X	
Laboratory Control Sample (LCS) %R		X	X		
Laboratory Control Sample Duplicate (LCSD) %R		Х	X		
LCS/LCSD Precision (RPD)		X	X		
Matrix Spike (MS) %R		X	X		
Matrix Spike Duplicate (MSD) %R		X	X		
MS/MSD Precision (RPD)		X		X	
Field/Lab Duplicate (RPD)		X		Х	
Surrogate Spike %R		X		X	
Dilution Factor		X		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		X	
Initial calibration %RSDs		X		Х	
Continuing calibration RRFs		X		Х	
Continuing calibration %Ds		X	X		
Instrument tune and performance check		X		X	

Re	ported	Performar Acceptat	
No	Yes	No Ye	
Y (GC/MS))		
	Х		X
	Х		X
	Х		X
	Х		X
	X		x
	Х		X
	Х		x
	No	Y (GC/MS) X	Reported Acceptate No Yes No Ye Y (GC/MS) X

Notes:

- %RSDRelative standard deviation%RPercent recovery
- RPD Relative percent difference
- %D Percent difference

Data Usability Summary Report

Sample Compliance Report

SAMPLE COMPLIANCE REPORT

Sample	Sampling					Cor	nplianc	y 1		
Delivery Group (SDG)	Date	Protocol	Sample ID	Matrix	VOC	SVOC	РСВ	MTL	MISC	Noncompliance
			TB050924	Water	No					VOC- Continuing calibration %D
			EB050924	Water	No	No				VOC- Continuing calibration %D SVOC- LCS/LCSD RPD, Continuing calibration %D
460-303613-1	5/09/2024	SW-846	MW-22S	Water	No	No				VOC- Continuing calibration %D SVOC- LCS/LCSD RPD, Continuing calibration %D
			MW-22D	Water	No	No				VOC- Continuing calibration %D SVOC- LCS/LCSD RPD, Continuing calibration %D
			MW-21S	Water	No	No				VOC- Continuing calibration %D SVOC- LCS/LCSD %R, Continuing calibration %D
			TB051024	Water	No					VOC- LCS/LCSD %R, Continuing calibration %D
			EB051024	Water	No	No				VOC- LCS/LCSD %R, Continuing calibration %D SVOC- LCS/LCSD %R, Continuing calibration %D
460-303677-1	5/10/2024	SW-846	MW-21S	Water	No	No				VOC- LCS/LCSD %R, Continuing calibration %D SVOC- LCS/LCSD %R, Continuing calibration %D
			DUP051024	Water	No	No				VOC- LCS/LCSD %R, Continuing calibration %D SVOC- LCS/LCSD %R, Continuing calibration %D

Note:

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Lisa Horton

SIGNATURE:

Lisa Hoston

DATE: June 9, 2024

PEER REVIEW: Joseph C. Houser

DATE: June 10, 2024

www.arcadis.com 54419R_460-303613-1_460-303677-1_VOC_SVOC_may2024.docx Chain of Custody and Corrected Sample Analysis Data Sheets

Eurofins Environment Testing Northeast, LLC

777 New Durham Road Edison, NJ 08817

Chain of Custody Record

Phone (732) 549-3900 Fax (732) 549-3679	o e en																			
Client Information	Sampler Alyss	a R H	ynes	Lab Giln		e, Jul	ie					Car	rier Tra	acking N	lo(s)	Ì		COC No		
Client Contact: Steven Feldman	Phone 516-	297-1	466	E-Ma Julio		Imor	e@e	et eur	ofinsu	s com		7						Page Page of		
^{Company[,] Arcadis of New York, Inc}					Τ					Analy	sis R	eque	ested	ł				JOD # 303	,613	fairthian t
Address 105 Maxess Road, Suite N108	Due Date Request	ted:																Preservation Co	des:	
City	TAT Requested (d	avs):			-													A - HCL	M - Hexane	
Melville		5 Day	ys															B - NaOH C - Zn Acetate	N - None O - AsNaO2	
State Zip NY, 11747																'		D - Nitric Acid E - NaHSO4 F - MeOH	P - Na2O4S Q - Na2SO3 R - Na2S2O3	
Phone (631) 249-7600	PO# [.]				6													G - Amchlor H - Ascorbic Acıd	S - H2SO4 T - TSP Dodecahy	ydrate
Email <u>Steven Feldman@arcadıs com</u>	WO# 30205663 04 0-	42624			s or N	(oN											2	I - Ice J - DI Water K - EDTA	U - Acetone V - MCAA W - pH 4-5	
Project Name Former Dangman Park MGP Site	Project # 30205663 04				Ye	5						4			_		aine	L - EDA	Z - other (specify)	
Site Former Dangman Park MGP Site	SSOW#				ample	sD (Ye:						160-30					of containers			
			Sample Type	Matrix (_{W=water} ,	Filtered S	m MS/M	VOCs (8260)	SVOCs (8270)			~	303613 C					Total Number			
	Samula Data	Sample	(C=comp,	S=solid, O=waste/oil,	leld	ertoi	ő	ů S				Chain					otal	Crusial I		
Sample Identification	Sample Date	Time	G=grab)	BT=Tissue, A=Air			> A	ίο I			m'	으				1	长	Special II	nstructions/Note	
TB050924	5/9/24		G	W	N	N	X				لمتعنده	Custod					2			
EB050924	5/9/24	0800	G	W		N	X	Х				ody				1	4	1		
MW-225	5/9/24	1230	G	W		N	X	X									5			
MW-22D	5/9/24	1135	G	W	N	N	X	Х									5			
MW-21S	5 9 24	1505	G	W	N	1	X	Х							_		15	MSMSD		
												1			1			•		
																1				
																	T			<u></u>
				ata 11 Martini, martagon da												1				
Possible Hazard Identification	\sim	·				San	nple	Disp	oosal ((A fee						arer	etaiı	ned longer than	1 month)	
Non-Hazard Flammable Skin Irritant Pois	on B 🕅 Inkno	wn 🖵 R	adıologıcal						To Cl			_	osal E	By Lat)		Arcl	hive For	Months	
Deliverable Requested I, II, III, IV, Other (specify)						Spe	cial	Instru	uctions	s/QC Re	equirer	nents								
Empty Kit Relinquished by		Date			Tir	me		.7					Meth	nod of S	hipmen	nt.				
Relinquished by Alyssa R. Hyngs	Date/Time	1600	>	Company Arcadi	s		2	ived b	in	ar				Å	Date/Tir タス	Ē		1605	Company MA	
Relinquished by	Date/Time			Company			Rece			274	to)		ſ	Date/Tir	F9)	21	1 20100	Company	-
Relinquished by	Date/Time			Company				ived b		_				ľ	Date/Tir			1	Company	
Custody Seals Intact: Custody Seal No Δ Yes Δ No							Coole	er Ten	nperatur	re(s) ⁰C a	nd Othe	r Rema	rks.							
				and and there is a second with	an ar inda	. Com local													11 01/16/2016	

1.1 1:5 209

Ver 01/16/2019

11

Definitions/Glossary

Client: Arcadis U.S., Inc. Project/Site: Former Dangman Park MGP Site

Qualifiers

Quaimers	
GC/MS VOA	
Qualifier	Qualifier Description
J	Indicates an estimated value.
U	Analyzed for but not detected.
GC/MS Semi	
Qualifier	Qualifier Description
*	RPD of the LCSD exceeds the control limits
*	LCS or LCSD is outside acceptance limits.
*	MS or MSD is outside acceptance limits.
E	Compound concentration exceeds the upper level of the calibration range of the instrument for that specific analysis.
.1	Indicates an estimated value.
U	Analyzed for but not detected.
<u> </u>	
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
	Too Numerous To Count

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Client Sample ID: TB050924

Date Collected: 05/09/24 00:00 Date Received: 05/09/24 20:00

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			05/14/24 19:06	-
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.37	ug/L			05/14/24 19:06	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.31	ug/L			05/14/24 19:06	1
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			05/14/24 19:06	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			05/14/24 19:06	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			05/14/24 19:06	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.37	ug/L			05/14/24 19:06	1
1,2-Dibromo-3-Chloropropane	1.0	U J	1.0	0.38	ug/L			05/14/24 19:06	1
1,2-Dichlorobenzene	1.0	U	1.0	0.21	ug/L			05/14/24 19:06	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			05/14/24 19:06	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			05/14/24 19:06	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			05/14/24 19:06	1
1,4-Dichlorobenzene	1.0	U	1.0	0.33	ug/L			05/14/24 19:06	1
1,4-Dioxane	50	U	50		ug/L			05/14/24 19:06	
2-Butanone (MEK)	5.0	U	5.0		ug/L			05/14/24 19:06	
2-Hexanone	5.0		5.0		ug/L			05/14/24 19:06	1
4-Methyl-2-pentanone (MIBK)	5.0		5.0		ug/L			05/14/24 19:06	
Acetone	5.0		5.0		ug/L			05/14/24 19:06	
Benzene	1.0		1.0		ug/L			05/14/24 19:06	
Bromoform	1.0		1.0	0.54	-			05/14/24 19:06	
Bromomethane	1.0		1.0		ug/L			05/14/24 19:06	
Carbon disulfide	1.0		1.0		ug/L			05/14/24 19:06	
Carbon tetrachloride	1.0		1.0		ug/L			05/14/24 19:06	
Chlorobenzene	1.0		1.0		ug/L			05/14/24 19:06	
Dibromochloromethane	1.0		1.0		ug/L			05/14/24 19:06	
Chloroethane	1.0		1.0		ug/L			05/14/24 19:06	
Chloroform	1.0		1.0		ug/L			05/14/24 19:06	
Chloromethane	1.0		1.0		ug/L			05/14/24 19:06	
cis-1,2-Dichloroethene	1.0		1.0		ug/L			05/14/24 19:06	
cis-1,3-Dichloropropene	1.0		1.0		ug/L			05/14/24 19:06	
Cyclohexane	1.0		1.0		ug/L			05/14/24 19:06	
Bromodichloromethane	1.0		1.0		ug/L			05/14/24 19:06	
Dichlorodifluoromethane	1.0		1.0		ug/L			05/14/24 19:06	
Ethylbenzene	1.0		1.0		ug/L			05/14/24 19:06	
1.2-Dibromoethane	1.0		1.0		ug/L			05/14/24 19:06	
Isopropylbenzene	1.0		1.0		ug/L			05/14/24 19:06	
Methyl acetate	5.0		5.0		ug/L			05/14/24 19:06	
Methyl tert-butyl ether	1.0		1.0		ug/L			05/14/24 19:06	
Methylcyclohexane	1.0		1.0		ug/L			05/14/24 19:06	
Methylene Chloride	1.0		1.0		ug/L			05/14/24 19:00	
Styrene	1.0		1.0		ug/L			05/14/24 19:00	
Tetrachloroethene	1.0		1.0		ug/L			05/14/24 19:06	
Toluene	1.0		1.0		ug/L			05/14/24 19:06	
trans-1,2-Dichloroethene	1.0		1.0		ug/L			05/14/24 19:06	
trans-1,3-Dichloropropene	1.0		1.0		ug/L ug/L			05/14/24 19:06	
Trichloroethene	1.0		1.0		ug/L ug/L			05/14/24 19:06	
	1.0		1.0						
Trichlorofluoromethane					ug/L			05/14/24 19:06	1
Vinyl chloride	1.0		1.0		ug/L			05/14/24 19:06	1
Xylenes, Total	2.0	U	2.0	0.65	ug/L			05/14/24 19:06	1

Lab Sample ID: 460-303613-1 Matrix: Water

Client Sample ID: TB050924 Date Collected: 05/09/24 00:00 Date Received: 05/09/24 20:00

Lab Sample ID: 460-303613-1 Matrix: Water

	nathe organie	Jourboan		(0011111	iucu)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
n-Butylbenzene	1.0	U	1.0	0.32	ug/L			05/14/24 19:06	1
1,2,4-Trimethylbenzene	1.0	U	1.0	0.37	ug/L			05/14/24 19:06	1
sec-Butylbenzene	1.0	U	1.0	0.37	ug/L			05/14/24 19:06	1
N-Propylbenzene	1.0	U	1.0	0.32	ug/L			05/14/24 19:06	1
1,3,5-Trimethylbenzene	1.0	U	1.0	0.33	ug/L			05/14/24 19:06	1
tert-Butylbenzene	1.0	U	1.0	0.34	ug/L			05/14/24 19:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		70 - 128			-		05/14/24 19:06	1
4-Bromofluorobenzene	96		76 - 120					05/14/24 19:06	1

77 - 132

80 - 120

Client Sample ID: EB050924

Date Collected: 05/09/24 08:00 Date Received: 05/09/24 20:00

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 460-303613-2

05/14/24 19:06

05/14/24 19:06

Matrix: Water

1

1

—		
Method: SW846 8260D -	 Volatile Organio 	c Compounds by GC/MS

Method: SW846 8260D - Volatile Organic Compounds by GC/MS (Continued)

103

103

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			05/14/24 19:25	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.37	ug/L			05/14/24 19:25	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.31	ug/L			05/14/24 19:25	1
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			05/14/24 19:25	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			05/14/24 19:25	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			05/14/24 19:25	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.37	ug/L			05/14/24 19:25	1
1,2-Dibromo-3-Chloropropane	1.0	U J	1.0	0.38	ug/L			05/14/24 19:25	1
1,2-Dichlorobenzene	1.0	U	1.0	0.21	ug/L			05/14/24 19:25	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			05/14/24 19:25	1
1,2-Dichloropropane	1.0	U	1.0	0.35	ug/L			05/14/24 19:25	1
1,3-Dichlorobenzene	1.0	U	1.0	0.34	ug/L			05/14/24 19:25	1
1,4-Dichlorobenzene	1.0	U	1.0	0.33	ug/L			05/14/24 19:25	1
1,4-Dioxane	50	U	50	28	ug/L			05/14/24 19:25	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			05/14/24 19:25	1
2-Hexanone	5.0	U	5.0	1.1	ug/L			05/14/24 19:25	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	1.3	ug/L			05/14/24 19:25	1
Acetone	5.0	U	5.0	4.4	ug/L			05/14/24 19:25	1
Benzene	1.0	U	1.0	0.20	ug/L			05/14/24 19:25	1
Bromoform	1.0	U	1.0	0.54	ug/L			05/14/24 19:25	1
Bromomethane	1.0	U	1.0	0.55	ug/L			05/14/24 19:25	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			05/14/24 19:25	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			05/14/24 19:25	1
Chlorobenzene	1.0	U	1.0	0.38	ug/L			05/14/24 19:25	1
Dibromochloromethane	1.0	U	1.0	0.28	ug/L			05/14/24 19:25	1
Chloroethane	1.0	U	1.0	0.32	ug/L			05/14/24 19:25	1
Chloroform	1.0	U	1.0	0.33	ug/L			05/14/24 19:25	1
Chloromethane	1.0	U	1.0	0.40	ug/L			05/14/24 19:25	1
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			05/14/24 19:25	1
cis-1,3-Dichloropropene	1.0	U	1.0		ug/L			05/14/24 19:25	1
Cyclohexane	1.0	U	1.0	0.32				05/14/24 19:25	1

Eurofins Edison

Client Sample ID: EB050924

Date Collected: 05/09/24 08:00 Date Received: 05/09/24 20:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromodichloromethane	1.0	U	1.0	0.34	ug/L			05/14/24 19:25	1
Dichlorodifluoromethane	1.0	U	1.0	0.31	ug/L			05/14/24 19:25	1
Ethylbenzene	1.0	U	1.0	0.30	ug/L			05/14/24 19:25	1
1,2-Dibromoethane	1.0	U	1.0	0.50	ug/L			05/14/24 19:25	1
Isopropylbenzene	1.0	U	1.0	0.34	ug/L			05/14/24 19:25	1
Methyl acetate	5.0	U	5.0	0.79	ug/L			05/14/24 19:25	1
Methyl tert-butyl ether	1.0	U	1.0	0.22	ug/L			05/14/24 19:25	1
Methylcyclohexane	1.0	U	1.0	0.71	ug/L			05/14/24 19:25	1
Methylene Chloride	0.92	J	1.0	0.32	ug/L			05/14/24 19:25	1
Styrene	1.0	U	1.0	0.42	ug/L			05/14/24 19:25	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			05/14/24 19:25	1
Toluene	1.0	U	1.0	0.38	ug/L			05/14/24 19:25	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			05/14/24 19:25	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			05/14/24 19:25	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			05/14/24 19:25	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			05/14/24 19:25	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			05/14/24 19:25	1
Xylenes, Total	2.0	U	2.0	0.65	ug/L			05/14/24 19:25	1
n-Butylbenzene	1.0	U	1.0	0.32	ug/L			05/14/24 19:25	1
1,2,4-Trimethylbenzene	1.0	U	1.0	0.37	ug/L			05/14/24 19:25	1
sec-Butylbenzene	1.0	U	1.0	0.37	ug/L			05/14/24 19:25	1
N-Propylbenzene	1.0	U	1.0	0.32	ug/L			05/14/24 19:25	1
1,3,5-Trimethylbenzene	1.0	U	1.0	0.33	ug/L			05/14/24 19:25	1
tert-Butylbenzene	1.0	U	1.0	0.34	ug/L			05/14/24 19:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	103		70 - 128	—		05/14/24 19:25	1	
4-Bromofluorobenzene	95		76 - 120			05/14/24 19:25	1	
Dibromofluoromethane (Surr)	103		77 - 132			05/14/24 19:25	1	
Toluene-d8 (Surr)	101		80 - 120			05/14/24 19:25	1	

Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	10	U	10	1.2	ug/L		05/11/24 09:02	05/11/24 19:37	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		05/11/24 09:02	05/11/24 19:37	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		05/11/24 09:02	05/11/24 19:37	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		05/11/24 09:02	05/11/24 19:37	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		05/11/24 09:02	05/11/24 19:37	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		05/11/24 09:02	05/11/24 19:37	1
2,4-Dinitrophenol	40	U	40	2.6	ug/L		05/11/24 09:02	05/11/24 19:37	1
2,4-Dinitrotoluene	10	U	10	1.0	ug/L		05/11/24 09:02	05/11/24 19:37	1
2,6-Dinitrotoluene	2.0	U	2.0	0.83	ug/L		05/11/24 09:02	05/11/24 19:37	1
2-Chloronaphthalene	10	U	10	1.2	ug/L		05/11/24 09:02	05/11/24 19:37	1
2-Chlorophenol	10	U	10	0.38	ug/L		05/11/24 09:02	05/11/24 19:37	1
2-Methylnaphthalene	10	U	10	0.53	ug/L		05/11/24 09:02	05/11/24 19:37	1
2-Methylphenol	10	U	10	0.67	ug/L		05/11/24 09:02	05/11/24 19:37	1
2-Nitroaniline	10	U	10	0.47	ug/L		05/11/24 09:02	05/11/24 19:37	1
2-Nitrophenol	10	U	10	0.75	ug/L		05/11/24 09:02	05/11/24 19:37	1
3,3'-Dichlorobenzidine	10	U	10	1.4	ug/L		05/11/24 09:02	05/11/24 19:37	1
3-Nitroaniline	10	U	10	1.9	ug/L		05/11/24 09:02	05/11/24 19:37	1

Job ID: 460-303613-1

Lab Sample ID: 460-303613-2 Matrix: Water

Lab Sample ID: 460-303613-2 Matrix: Water

Client Sample ID: EB050924 Date Collected: 05/09/24 08:00

Date Received: 05/09/24 20:00

Method: SW846 8270E - Sen Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
4,6-Dinitro-2-methylphenol	20	U	20	3.0	ug/L		05/11/24 09:02	05/11/24 19:37	
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		05/11/24 09:02	05/11/24 19:37	
4-Chloro-3-methylphenol	10	U	10	0.58	ug/L		05/11/24 09:02	05/11/24 19:37	
4-Chloroaniline	10	U J	10	1.9	ug/L		05/11/24 09:02	05/11/24 19:37	
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		05/11/24 09:02	05/11/24 19:37	
4-Nitroaniline	10	U	10	1.2	ug/L		05/11/24 09:02	05/11/24 19:37	
4-Nitrophenol	20	U	20	4.0	ug/L		05/11/24 09:02	05/11/24 19:37	
Acenaphthene	10	U	10	1.1	ug/L		05/11/24 09:02	05/11/24 19:37	
Acenaphthylene	10	U	10	0.82	ug/L		05/11/24 09:02	05/11/24 19:37	
Acetophenone	10	U	10	2.3	ug/L		05/11/24 09:02	05/11/24 19:37	
Anthracene	10	U	10	1.3	ug/L		05/11/24 09:02	05/11/24 19:37	
Atrazine	2.0	U	2.0	1.3	ug/L		05/11/24 09:02	05/11/24 19:37	
Benzaldehyde	10	U	10		ug/L		05/11/24 09:02	05/11/24 19:37	
Benzo[a]anthracene	1.0	U	1.0	0.59			05/11/24 09:02	05/11/24 19:37	
Benzo[a]pyrene	1.0	U	1.0	0.41	ug/L		05/11/24 09:02	05/11/24 19:37	
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		05/11/24 09:02	05/11/24 19:37	
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		05/11/24 09:02	05/11/24 19:37	
Benzo[k]fluoranthene	1.0	U	1.0	0.67	-		05/11/24 09:02	05/11/24 19:37	
Bis(2-chloroethoxy)methane	10	U	10	0.59	ug/L		05/11/24 09:02	05/11/24 19:37	
Bis(2-chloroethyl)ether	1.0	U	1.0	0.63	ug/L		05/11/24 09:02	05/11/24 19:37	
Bis(2-ethylhexyl) phthalate	2.0	U	2.0	0.80	-		05/11/24 09:02	05/11/24 19:37	
Butyl benzyl phthalate	10	U,	10	0.85	ug/L		05/11/24 09:02	05/11/24 19:37	
Caprolactam	10	U/ J	10		ug/L		05/11/24 09:02	05/11/24 19:37	
Carbazole	10	υ	10	0.68	-		05/11/24 09:02	05/11/24 19:37	
Chrysene	2.0	U	2.0	0.91	ug/L		05/11/24 09:02	05/11/24 19:37	
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		05/11/24 09:02	05/11/24 19:37	
Dibenzofuran	10	U	10		ug/L		05/11/24 09:02	05/11/24 19:37	
Diethyl phthalate	10	U	10	0.98	ug/L		05/11/24 09:02	05/11/24 19:37	
Dimethyl phthalate	10	U	10	0.77			05/11/24 09:02	05/11/24 19:37	
Di-n-butyl phthalate	10	U	10	0.84	-		05/11/24 09:02	05/11/24 19:37	
Di-n-octyl phthalate	10	U	10	0.75	0		05/11/24 09:02	05/11/24 19:37	
Fluoranthene	10	U	10	0.84			05/11/24 09:02	05/11/24 19:37	
Fluorene	10	U	10	0.91	-			05/11/24 19:37	
Hexachlorobenzene	1.0	U	1.0	0.40	-			05/11/24 19:37	
Hexachlorobutadiene	1.0	U	1.0	0.78			05/11/24 09:02	05/11/24 19:37	
Hexachlorocyclopentadiene	10	U	10		ug/L		05/11/24 09:02	05/11/24 19:37	
Hexachloroethane	2.0		2.0	0.80				05/11/24 19:37	
Indeno[1,2,3-cd]pyrene	2.0		2.0	0.94				05/11/24 19:37	
Isophorone	10		10	0.80				05/11/24 19:37	
' Naphthalene	2.0		2.0	0.54	-			05/11/24 19:37	
Nitrobenzene	1.0		1.0	0.57				05/11/24 19:37	
N-Nitrosodi-n-propylamine	1.0		1.0	0.43	-			05/11/24 19:37	
N-Nitrosodiphenylamine	10		10	0.89	-			05/11/24 19:37	
Pentachlorophenol	20		20		ug/L			05/11/24 19:37	
Phenanthrene	10		10		ug/L			05/11/24 19:37	
Phenol	10		10	0.29	-			05/11/24 19:37	
Pyrene	10		10		ug/L			05/11/24 19:37	
3 & 4 Methylphenol		U	10		ug/L			05/11/24 19:37	

Matrix: Water

Client Sample ID: EB050924 Date Collected: 05/09/24 08:00 Date Received: 05/09/24 20:00

Surrogate	%Recovery Qualifier	Limits	Prepared Analyz	ed Dil Fac
2,4,6-Tribromophenol (Surr)	86	37 - 150	05/11/24 09:02 05/11/24	19:37 1
2-Fluorobiphenyl	79	46 - 139	05/11/24 09:02 05/11/24	19:37 1
2-Fluorophenol (Surr)	47	16 - 80	05/11/24 09:02 05/11/24	19:37 1
Nitrobenzene-d5 (Surr)	80	51 - 145	05/11/24 09:02 05/11/24	19:37 1
Phenol-d5 (Surr)	33	10 - 56	05/11/24 09:02 05/11/24	19:37 1
Terphenyl-d14 (Surr)	18	13 - 150	05/11/24 09:02 05/11/24	19:37 1

Client Sample ID: MW-22S Date Collected: 05/09/24 12:30

Date Received: 05/09/24 20:00

Lab Sample ID: 460-303613-3 Matrix: Water

Lab Sample ID: 460-303613-2

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0 U	1.0	0.24	ug/L			05/14/24 19:45	1
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.37	ug/L			05/14/24 19:45	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0 U	1.0	0.31	ug/L			05/14/24 19:45	1
1,1,2-Trichloroethane	1.0 U	1.0	0.20	ug/L			05/14/24 19:45	1
1,1-Dichloroethane	1.0 U	1.0	0.26	ug/L			05/14/24 19:45	1
1,1-Dichloroethene	1.0 U	1.0	0.26	ug/L			05/14/24 19:45	1
1,2,4-Trichlorobenzene	1.0 U	1.0	0.37	ug/L			05/14/24 19:45	1
1,2-Dibromo-3-Chloropropane	1.0 U J	1.0	0.38	ug/L			05/14/24 19:45	1
1,2-Dichlorobenzene	1.0 U	1.0	0.21	ug/L			05/14/24 19:45	1
1,2-Dichloroethane	1.0 U	1.0	0.43	ug/L			05/14/24 19:45	1
1,2-Dichloropropane	1.0 U	1.0	0.35	ug/L			05/14/24 19:45	1
1,3-Dichlorobenzene	1.0 U	1.0	0.34	ug/L			05/14/24 19:45	1
1,4-Dichlorobenzene	1.0 U	1.0	0.33	ug/L			05/14/24 19:45	1
1,4-Dioxane	50 U	50	28	ug/L			05/14/24 19:45	1
2-Butanone (MEK)	5.0 U	5.0	1.9	ug/L			05/14/24 19:45	1
2-Hexanone	5.0 U	5.0	1.1	ug/L			05/14/24 19:45	1
4-Methyl-2-pentanone (MIBK)	5.0 U	5.0	1.3	ug/L			05/14/24 19:45	1
Acetone	5.0 U	5.0	4.4	ug/L			05/14/24 19:45	1
Benzene	1.0 U	1.0	0.20	ug/L			05/14/24 19:45	1
Bromoform	1.0 U	1.0	0.54	ug/L			05/14/24 19:45	1
Bromomethane	1.0 U	1.0	0.55	ug/L			05/14/24 19:45	1
Carbon disulfide	1.0 U	1.0	0.82	ug/L			05/14/24 19:45	1
Carbon tetrachloride	1.0 U	1.0	0.21	ug/L			05/14/24 19:45	1
Chlorobenzene	1.0 U	1.0	0.38	ug/L			05/14/24 19:45	1
Dibromochloromethane	1.0 U	1.0	0.28	ug/L			05/14/24 19:45	1
Chloroethane	1.0 U	1.0	0.32	ug/L			05/14/24 19:45	1
Chloroform	1.0 U	1.0	0.33	ug/L			05/14/24 19:45	1
Chloromethane	1.0 U	1.0	0.40	ug/L			05/14/24 19:45	1
cis-1,2-Dichloroethene	1.0 U	1.0	0.22	ug/L			05/14/24 19:45	1
cis-1,3-Dichloropropene	1.0 U	1.0	0.22	ug/L			05/14/24 19:45	1
Cyclohexane	1.0 U	1.0	0.32	ug/L			05/14/24 19:45	1
Bromodichloromethane	1.0 U	1.0	0.34	ug/L			05/14/24 19:45	1
Dichlorodifluoromethane	1.0 U	1.0	0.31	ug/L			05/14/24 19:45	1
Ethylbenzene	1.0 U	1.0	0.30	ug/L			05/14/24 19:45	1
1,2-Dibromoethane	1.0 U	1.0	0.50	ug/L			05/14/24 19:45	1
Isopropylbenzene	1.0 U	1.0	0.34	ug/L			05/14/24 19:45	1
Methyl acetate	5.0 U	5.0	0.79	ug/L			05/14/24 19:45	1

Client Sample ID: MW-22S

Date Collected: 05/09/24 12:30 Date Received: 05/09/24 20:00

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 460-303613-3 Matrix: Water

05/14/24 19:45

05/14/24 19:45

1

1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	1.0	U	1.0	0.22	ug/L			05/14/24 19:45	1
Methylcyclohexane	1.0	U	1.0	0.71	ug/L			05/14/24 19:45	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			05/14/24 19:45	1
Styrene	1.0	U	1.0	0.42	ug/L			05/14/24 19:45	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			05/14/24 19:45	1
Toluene	1.0	U	1.0	0.38	ug/L			05/14/24 19:45	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			05/14/24 19:45	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			05/14/24 19:45	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			05/14/24 19:45	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			05/14/24 19:45	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			05/14/24 19:45	1
Xylenes, Total	2.0	U	2.0	0.65	ug/L			05/14/24 19:45	1
n-Butylbenzene	1.0	U	1.0	0.32	ug/L			05/14/24 19:45	1
1,2,4-Trimethylbenzene	1.0	U	1.0	0.37	ug/L			05/14/24 19:45	1
sec-Butylbenzene	1.0	U	1.0	0.37	ug/L			05/14/24 19:45	1
N-Propylbenzene	1.0	U	1.0	0.32	ug/L			05/14/24 19:45	1
1,3,5-Trimethylbenzene	1.0	U	1.0	0.33	ug/L			05/14/24 19:45	1
tert-Butylbenzene	1.0	U	1.0	0.34	ug/L			05/14/24 19:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		70 - 128					05/14/24 19:45	1
4-Bromofluorobenzene	94		76 - 120					05/14/24 19:45	1

77 - 132

80 - 120

Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS)

103

100

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	10	U	10	1.2	ug/L		05/11/24 09:02	05/11/24 19:59	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		05/11/24 09:02	05/11/24 19:59	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		05/11/24 09:02	05/11/24 19:59	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		05/11/24 09:02	05/11/24 19:59	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		05/11/24 09:02	05/11/24 19:59	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		05/11/24 09:02	05/11/24 19:59	1
2,4-Dinitrophenol	40	U	40	2.6	ug/L		05/11/24 09:02	05/11/24 19:59	1
2,4-Dinitrotoluene	10	U	10	1.0	ug/L		05/11/24 09:02	05/11/24 19:59	1
2,6-Dinitrotoluene	2.0	U	2.0	0.83	ug/L		05/11/24 09:02	05/11/24 19:59	1
2-Chloronaphthalene	10	U	10	1.2	ug/L		05/11/24 09:02	05/11/24 19:59	1
2-Chlorophenol	10	U	10	0.38	ug/L		05/11/24 09:02	05/11/24 19:59	1
2-Methylnaphthalene	10	U	10	0.53	ug/L		05/11/24 09:02	05/11/24 19:59	1
2-Methylphenol	10	U	10	0.67	ug/L		05/11/24 09:02	05/11/24 19:59	1
2-Nitroaniline	10	U	10	0.47	ug/L		05/11/24 09:02	05/11/24 19:59	1
2-Nitrophenol	10	U	10	0.75	ug/L		05/11/24 09:02	05/11/24 19:59	1
3,3'-Dichlorobenzidine	10	U	10	1.4	ug/L		05/11/24 09:02	05/11/24 19:59	1
3-Nitroaniline	10	U	10	1.9	ug/L		05/11/24 09:02	05/11/24 19:59	1
4,6-Dinitro-2-methylphenol	20	U	20	3.0	ug/L		05/11/24 09:02	05/11/24 19:59	1
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		05/11/24 09:02	05/11/24 19:59	1
4-Chloro-3-methylphenol	10	U	10	0.58	ug/L		05/11/24 09:02	05/11/24 19:59	1
4-Chloroaniline	10	U J	10	1.9	ug/L		05/11/24 09:02	05/11/24 19:59	1
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		05/11/24 09:02	05/11/24 19:59	1
4-Nitroaniline	10	U	10	1.2	ug/L		05/11/24 09:02	05/11/24 19:59	1

Matrix: Water

Lab Sample ID: 460-303613-3

Client Sample ID: MW-22S

Date Collected: 05/09/24 12:30 Date Received: 05/09/24 20:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	20	U	20	4.0	ug/L		05/11/24 09:02	05/11/24 19:59	1
Acenaphthene	10	U	10	1.1	ug/L		05/11/24 09:02	05/11/24 19:59	1
Acenaphthylene	10	U	10	0.82	ug/L		05/11/24 09:02	05/11/24 19:59	1
Acetophenone	10	U	10	2.3	ug/L		05/11/24 09:02	05/11/24 19:59	1
Anthracene	10	U	10	1.3	ug/L		05/11/24 09:02	05/11/24 19:59	1
Atrazine	2.0	U	2.0	1.3	ug/L		05/11/24 09:02	05/11/24 19:59	1
Benzaldehyde	10	U	10	2.1	ug/L		05/11/24 09:02	05/11/24 19:59	1
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		05/11/24 09:02	05/11/24 19:59	1
Benzo[a]pyrene	1.0	U	1.0	0.41	ug/L		05/11/24 09:02	05/11/24 19:59	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		05/11/24 09:02	05/11/24 19:59	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		05/11/24 09:02	05/11/24 19:59	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		05/11/24 09:02	05/11/24 19:59	1
Bis(2-chloroethoxy)methane	10	U	10	0.59	ug/L		05/11/24 09:02	05/11/24 19:59	1
Bis(2-chloroethyl)ether	1.0	U	1.0	0.63	ug/L		05/11/24 09:02	05/11/24 19:59	1
Bis(2-ethylhexyl) phthalate	2.0	U	2.0	0.80	ug/L		05/11/24 09:02	05/11/24 19:59	1
Butyl benzyl phthalate	10	U	10	0.85	ug/L		05/11/24 09:02	05/11/24 19:59	1
Caprolactam	10	U J	10	2.2	ug/L		05/11/24 09:02	05/11/24 19:59	1
Carbazole	10	υ ʻ	10	0.68	ug/L		05/11/24 09:02	05/11/24 19:59	1
Chrysene	2.0	U	2.0	0.91	ug/L		05/11/24 09:02	05/11/24 19:59	1
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		05/11/24 09:02	05/11/24 19:59	1
Dibenzofuran	10	U	10	1.1	ug/L		05/11/24 09:02	05/11/24 19:59	1
Diethyl phthalate	10	U	10	0.98	ug/L		05/11/24 09:02	05/11/24 19:59	1
Dimethyl phthalate	10	U	10	0.77	ug/L		05/11/24 09:02	05/11/24 19:59	1
Di-n-butyl phthalate	10	U	10	0.84	ug/L		05/11/24 09:02	05/11/24 19:59	1
Di-n-octyl phthalate	10	U	10	0.75	ug/L		05/11/24 09:02	05/11/24 19:59	1
Fluoranthene	10	U	10	0.84	ug/L		05/11/24 09:02	05/11/24 19:59	1
Fluorene	10	U	10	0.91	ug/L		05/11/24 09:02	05/11/24 19:59	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		05/11/24 09:02	05/11/24 19:59	1
Hexachlorobutadiene	1.0	U	1.0	0.78	ug/L		05/11/24 09:02	05/11/24 19:59	1
Hexachlorocyclopentadiene	10	U	10	3.6	ug/L		05/11/24 09:02	05/11/24 19:59	1
Hexachloroethane	2.0	U	2.0	0.80	ug/L		05/11/24 09:02	05/11/24 19:59	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	ug/L		05/11/24 09:02	05/11/24 19:59	1
Isophorone	10	U	10	0.80	ug/L		05/11/24 09:02	05/11/24 19:59	1
Naphthalene	2.0	U	2.0	0.54	ug/L		05/11/24 09:02	05/11/24 19:59	1
Nitrobenzene	1.0	U	1.0	0.57	ug/L		05/11/24 09:02	05/11/24 19:59	1
N-Nitrosodi-n-propylamine	1.0	U	1.0	0.43	ug/L		05/11/24 09:02	05/11/24 19:59	1
N-Nitrosodiphenylamine	10	U	10	0.89	ug/L		05/11/24 09:02	05/11/24 19:59	1
Pentachlorophenol	20	U	20	1.4	ug/L		05/11/24 09:02	05/11/24 19:59	1
Phenanthrene	10	U	10	1.3	ug/L		05/11/24 09:02	05/11/24 19:59	1
Phenol	10	U	10	0.29	ug/L		05/11/24 09:02	05/11/24 19:59	1
Pyrene	10	U	10	1.6	ug/L		05/11/24 09:02	05/11/24 19:59	1
3 & 4 Methylphenol	10	U	10	0.64	ug/L		05/11/24 09:02	05/11/24 19:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol (Surr)	89	37 - 150	05/11/24 09:02	05/11/24 19:59	
2-Fluorobiphenyl	80	46 - 139	05/11/24 09:02	05/11/24 19:59	1
2-Fluorophenol (Surr)	49	16 - 80	05/11/24 09:02	05/11/24 19:59	1
Nitrobenzene-d5 (Surr)	81	51 - 145	05/11/24 09:02	05/11/24 19:59	1
Phenol-d5 (Surr)	35	10 - 56	05/11/24 09:02	05/11/24 19:59	1
Terphenyl-d14 (Surr)	19	13 - 150	05/11/24 09:02	05/11/24 19:59	1

Lab Sample ID: 460-303613-4

Client Sample ID: MW-22D

Date Collected: 05/09/24 11:35 Date Received: 05/09/24 20:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			05/14/24 20:04	
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.37	ug/L			05/14/24 20:04	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.31	ug/L			05/14/24 20:04	
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			05/14/24 20:04	
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			05/14/24 20:04	
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			05/14/24 20:04	
1,2,4-Trichlorobenzene	1.0	U	1.0		ug/L			05/14/24 20:04	
,2-Dibromo-3-Chloropropane	1.0	U J	1.0		ug/L			05/14/24 20:04	
,2-Dichlorobenzene	1.0	U	1.0		ug/L			05/14/24 20:04	
,2-Dichloroethane	1.0	U	1.0		ug/L			05/14/24 20:04	
,2-Dichloropropane	1.0	U	1.0		ug/L			05/14/24 20:04	
.3-Dichlorobenzene	1.0	U	1.0		ug/L			05/14/24 20:04	
.4-Dichlorobenzene	1.0	U	1.0		ug/L			05/14/24 20:04	
.4-Dioxane	50	U	50		ug/L			05/14/24 20:04	
- Butanone (MEK)	5.0	U	5.0		ug/L			05/14/24 20:04	
-Hexanone	5.0		5.0		ug/L			05/14/24 20:04	
I-Methyl-2-pentanone (MIBK)	5.0		5.0		ug/L			05/14/24 20:04	
Acetone	5.0		5.0		ug/L			05/14/24 20:04	
Benzene	1.0		1.0		ug/L			05/14/24 20:04	
Bromoform	1.0		1.0		ug/L			05/14/24 20:04	
Bromomethane	1.0		1.0		ug/L			05/14/24 20:04	
Carbon disulfide	1.0		1.0		ug/L			05/14/24 20:04	
Carbon tetrachloride	1.0		1.0		ug/L			05/14/24 20:04	
Chlorobenzene	1.0		1.0		ug/L			05/14/24 20:04	
Dibromochloromethane	1.0		1.0		ug/L			05/14/24 20:04	
Chloroethane	1.0		1.0		ug/L			05/14/24 20:04	
Chloroform	0.85		1.0		ug/L			05/14/24 20:04	
Chloromethane	1.0		1.0		ug/L			05/14/24 20:04	
siis-1,2-Dichloroethene	1.0		1.0		ug/L ug/L			05/14/24 20:04	
sis-1,3-Dichloropropene	1.0		1.0		ug/L ug/L			05/14/24 20:04	
			1.0		ug/L				
Bromodichloromethane	1.0 1.0		1.0		-			05/14/24 20:04	
					ug/L			05/14/24 20:04	
Dichlorodifluoromethane	1.0		1.0		ug/L			05/14/24 20:04	
	1.0		1.0		ug/L			05/14/24 20:04	
,2-Dibromoethane	1.0		1.0	0.50				05/14/24 20:04	
sopropylbenzene	1.0		1.0		ug/L			05/14/24 20:04	
/lethyl acetate	5.0		5.0		ug/L			05/14/24 20:04	
Aethyl tert-butyl ether	1.0		1.0		ug/L			05/14/24 20:04	
<i>lethylcyclohexane</i>	1.0		1.0		ug/L			05/14/24 20:04	
lethylene Chloride	1.0		1.0		ug/L			05/14/24 20:04	
Styrene	1.0		1.0		ug/L			05/14/24 20:04	
etrachloroethene	1.0		1.0		ug/L			05/14/24 20:04	
oluene	1.0		1.0		ug/L			05/14/24 20:04	
rans-1,2-Dichloroethene	1.0		1.0		ug/L			05/14/24 20:04	
rans-1,3-Dichloropropene	1.0		1.0		ug/L			05/14/24 20:04	
richloroethene	1.0	U	1.0		ug/L			05/14/24 20:04	
richlorofluoromethane	1.0	U	1.0		ug/L			05/14/24 20:04	
/inyl chloride	1.0	U	1.0	0.17	ug/L			05/14/24 20:04	
Xylenes, Total	2.0	U	2.0	0.65	ug/L			05/14/24 20:04	

Client Sample ID: MW-22D Date Collected: 05/09/24 11:35 Date Received: 05/09/24 20:00

Toluene-d8 (Surr)

Lab Sample ID: 460-303613-4 Matrix: Water

05/14/24 20:04

1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
n-Butylbenzene	1.0	U	1.0	0.32	ug/L			05/14/24 20:04	1
1,2,4-Trimethylbenzene	1.0	U	1.0	0.37	ug/L			05/14/24 20:04	1
sec-Butylbenzene	1.0	U	1.0	0.37	ug/L			05/14/24 20:04	1
N-Propylbenzene	1.0	U	1.0	0.32	ug/L			05/14/24 20:04	1
1,3,5-Trimethylbenzene	1.0	U	1.0	0.33	ug/L			05/14/24 20:04	1
tert-Butylbenzene	1.0	U	1.0	0.34	ug/L			05/14/24 20:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		70 - 128					05/14/24 20:04	1
4-Bromofluorobenzene	96		76 - 120					05/14/24 20:04	1
Dibromofluoromethane (Surr)	104		77 - 132					05/14/24 20:04	1

80 - 120

Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS)

98

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	10	U	10	1.2	ug/L		05/11/24 09:02	05/11/24 20:20	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		05/11/24 09:02	05/11/24 20:20	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		05/11/24 09:02	05/11/24 20:20	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		05/11/24 09:02	05/11/24 20:20	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		05/11/24 09:02	05/11/24 20:20	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		05/11/24 09:02	05/11/24 20:20	1
2,4-Dinitrophenol	40	U	40	2.6	ug/L		05/11/24 09:02	05/11/24 20:20	1
2,4-Dinitrotoluene	10	U	10	1.0	ug/L		05/11/24 09:02	05/11/24 20:20	1
2,6-Dinitrotoluene	2.0	U	2.0	0.83	ug/L		05/11/24 09:02	05/11/24 20:20	1
2-Chloronaphthalene	10	U	10	1.2	ug/L		05/11/24 09:02	05/11/24 20:20	1
2-Chlorophenol	10	U	10	0.38	ug/L		05/11/24 09:02	05/11/24 20:20	1
2-Methylnaphthalene	10	U	10	0.53	ug/L		05/11/24 09:02	05/11/24 20:20	1
2-Methylphenol	10	U	10	0.67	ug/L		05/11/24 09:02	05/11/24 20:20	1
2-Nitroaniline	10	U	10	0.47	ug/L		05/11/24 09:02	05/11/24 20:20	1
2-Nitrophenol	10	U	10	0.75	ug/L		05/11/24 09:02	05/11/24 20:20	1
3,3'-Dichlorobenzidine	10	U	10	1.4	ug/L		05/11/24 09:02	05/11/24 20:20	1
3-Nitroaniline	10	U	10	1.9	ug/L		05/11/24 09:02	05/11/24 20:20	1
4,6-Dinitro-2-methylphenol	20	U	20	3.0	ug/L		05/11/24 09:02	05/11/24 20:20	1
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		05/11/24 09:02	05/11/24 20:20	1
4-Chloro-3-methylphenol	10	U	10	0.58	ug/L		05/11/24 09:02	05/11/24 20:20	1
4-Chloroaniline	10	U J	10	1.9	ug/L		05/11/24 09:02	05/11/24 20:20	1
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		05/11/24 09:02	05/11/24 20:20	1
4-Nitroaniline	10	U	10	1.2	ug/L		05/11/24 09:02	05/11/24 20:20	1
4-Nitrophenol	20	U	20	4.0	ug/L		05/11/24 09:02	05/11/24 20:20	1
Acenaphthene	10	U	10	1.1	ug/L		05/11/24 09:02	05/11/24 20:20	1
Acenaphthylene	10	U	10	0.82	ug/L		05/11/24 09:02	05/11/24 20:20	1
Acetophenone	10	U	10	2.3	ug/L		05/11/24 09:02	05/11/24 20:20	1
Anthracene	10	U	10		ug/L		05/11/24 09:02	05/11/24 20:20	1
Atrazine	2.0	U	2.0	1.3	ug/L		05/11/24 09:02	05/11/24 20:20	1
Benzaldehyde	10	U	10	2.1	ug/L		05/11/24 09:02	05/11/24 20:20	1
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		05/11/24 09:02	05/11/24 20:20	1
Benzo[a]pyrene	1.0	U	1.0	0.41	-		05/11/24 09:02	05/11/24 20:20	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68			05/11/24 09:02	05/11/24 20:20	1
Benzo[g,h,i]perylene	10	U	10	0.70	-		05/11/24 09:02	05/11/24 20:20	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		05/11/24 09:02	05/11/24 20:20	1

Lab Sample ID: 460-303613-4 **Matrix: Water**

Client Sample ID: MW-22D Date Collected: 05/09/24 11:35

Date Received: 05/09/24 20:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-chloroethoxy)methane	10	U	10	0.59	ug/L		05/11/24 09:02	05/11/24 20:20	1
Bis(2-chloroethyl)ether	1.0	U	1.0	0.63	ug/L		05/11/24 09:02	05/11/24 20:20	1
Bis(2-ethylhexyl) phthalate	2.0	U	2.0	0.80	ug/L		05/11/24 09:02	05/11/24 20:20	1
Butyl benzyl phthalate	10	U	10	0.85	ug/L		05/11/24 09:02	05/11/24 20:20	1
Caprolactam	10	U/ J	10	2.2	ug/L		05/11/24 09:02	05/11/24 20:20	1
Carbazole	10	U	10	0.68	ug/L		05/11/24 09:02	05/11/24 20:20	1
Chrysene	2.0	U	2.0	0.91	ug/L		05/11/24 09:02	05/11/24 20:20	1
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		05/11/24 09:02	05/11/24 20:20	1
Dibenzofuran	10	U	10	1.1	ug/L		05/11/24 09:02	05/11/24 20:20	1
Diethyl phthalate	10	U	10	0.98	ug/L		05/11/24 09:02	05/11/24 20:20	1
Dimethyl phthalate	10	U	10	0.77	ug/L		05/11/24 09:02	05/11/24 20:20	1
Di-n-butyl phthalate	10	U	10	0.84	ug/L		05/11/24 09:02	05/11/24 20:20	1
Di-n-octyl phthalate	10	U	10	0.75	ug/L		05/11/24 09:02	05/11/24 20:20	1
Fluoranthene	10	U	10	0.84	ug/L		05/11/24 09:02	05/11/24 20:20	1
Fluorene	10	U	10	0.91	ug/L		05/11/24 09:02	05/11/24 20:20	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		05/11/24 09:02	05/11/24 20:20	1
Hexachlorobutadiene	1.0	U	1.0	0.78	ug/L		05/11/24 09:02	05/11/24 20:20	1
Hexachlorocyclopentadiene	10	U	10	3.6	ug/L		05/11/24 09:02	05/11/24 20:20	1
Hexachloroethane	2.0	U	2.0	0.80	ug/L		05/11/24 09:02	05/11/24 20:20	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	ug/L		05/11/24 09:02	05/11/24 20:20	1
Isophorone	10	U	10	0.80	ug/L		05/11/24 09:02	05/11/24 20:20	1
Naphthalene	2.0	U	2.0	0.54	ug/L		05/11/24 09:02	05/11/24 20:20	1
Nitrobenzene	1.0	U	1.0	0.57	ug/L		05/11/24 09:02	05/11/24 20:20	1
N-Nitrosodi-n-propylamine	1.0	U	1.0	0.43	ug/L		05/11/24 09:02	05/11/24 20:20	1
N-Nitrosodiphenylamine	10	U	10	0.89	ug/L		05/11/24 09:02	05/11/24 20:20	1
Pentachlorophenol	20	U	20	1.4	ug/L		05/11/24 09:02	05/11/24 20:20	1
Phenanthrene	10	U	10	1.3	ug/L		05/11/24 09:02	05/11/24 20:20	1
Phenol	10	U	10	0.29	ug/L		05/11/24 09:02	05/11/24 20:20	1
Pyrene	10	U	10	1.6	ug/L		05/11/24 09:02	05/11/24 20:20	1
3 & 4 Methylphenol	10	U	10		ug/L		05/11/24 09:02	05/11/24 20:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	109		37 - 150				05/11/24 09:02	05/11/24 20:20	1
2-Fluorobiphenyl	90		46 - 139				05/11/24 09:02	05/11/24 20:20	1
2-Fluorophenol (Surr)	56		16 - 80				05/11/24 09:02	05/11/24 20:20	1
Nitrobenzene-d5 (Surr)	93		51 - 145				05/11/24 09:02	05/11/24 20:20	1
Phenol-d5 (Surr)	40		10 - 56				05/11/24 09:02	05/11/24 20:20	1
Terphenyl-d14 (Surr)	26		13 - 150				05/11/24 09:02	05/11/24 20:20	1

Client Sample ID: MW-21S Date Collected: 05/09/24 15:05 Date Received: 05/09/24 20:00

Method: SW846 8260D - Volat	ile Organic	Compound	s by GC/MS		
Analyte	Result	Qualifier	RL	MDL	Unit
1 1 1-Trichloroethane	1.0	U	1.0	0 24	ua/l

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			05/14/24 20:24	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.37	ug/L			05/14/24 20:24	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.31	ug/L			05/14/24 20:24	1
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			05/14/24 20:24	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			05/14/24 20:24	1

Matrix: Water

Lab Sample ID: 460-303613-5

Matrix: Water

Lab Sample ID: 460-303613-5

Client Sample ID: MW-21S

Date Collected: 05/09/24 15:05 Date Received: 05/09/24 20:00

Method: SW846 8260D - Vo Analyte		Qualifier	RL	MDL		D Prepared	Analyzed	Dil Fa
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L		05/14/24 20:24	
1,2,4-Trichlorobenzene	1.0	U	1.0		ug/L		05/14/24 20:24	
,2-Dibromo-3-Chloropropane	1.0	U J	1.0		ug/L		05/14/24 20:24	
,2-Dichlorobenzene	1.0	U	1.0		ug/L		05/14/24 20:24	
I,2-Dichloroethane	1.0	U	1.0		ug/L		05/14/24 20:24	
,2-Dichloropropane	1.0	U	1.0		ug/L		05/14/24 20:24	
I,3-Dichlorobenzene	1.0	U	1.0	0.34	-		05/14/24 20:24	
,4-Dichlorobenzene	1.0	U	1.0	0.33			05/14/24 20:24	
,4-Dioxane	50	U	50		ug/L		05/14/24 20:24	
-Butanone (MEK)	5.0	U	5.0		ug/L		05/14/24 20:24	
-Hexanone	5.0		5.0		ug/L		05/14/24 20:24	
-Methyl-2-pentanone (MIBK)	5.0		5.0		ug/L		05/14/24 20:24	
Acetone	5.0		5.0		ug/L		05/14/24 20:24	
Benzene	1.0		1.0		ug/L		05/14/24 20:24	
Bromoform	1.0		1.0		ug/L		05/14/24 20:24	
romomethane	1.0		1.0	0.55	-		05/14/24 20:24	
Carbon disulfide	1.0		1.0		ug/L		05/14/24 20:24	
Carbon tetrachloride	1.0		1.0		ug/L		05/14/24 20:24	
Chlorobenzene	1.0		1.0	0.38	-		05/14/24 20:24	
Dibromochloromethane	1.0		1.0		ug/L		05/14/24 20:24	
hloroethane	1.0		1.0		ug/L		05/14/24 20:24	
hloroform	1.0		1.0	0.33	-		05/14/24 20:24	
hloromethane	1.0		1.0		ug/L		05/14/24 20:24	
s-1,2-Dichloroethene	1.0		1.0		ug/L		05/14/24 20:24	
s-1,3-Dichloropropene	1.0		1.0	0.22	-		05/14/24 20:24	
yclohexane	1.0		1.0		ug/L		05/14/24 20:24	
romodichloromethane	1.0		1.0		ug/L		05/14/24 20:24	
lichlorodifluoromethane	1.0		1.0	0.34	-		05/14/24 20:24	
					ug/L		05/14/24 20:24	
thylbenzene ,2-Dibromoethane	1.0 1.0		1.0 1.0		ug/L ug/L		05/14/24 20:24	
sopropylbenzene	1.0		1.0		-		05/14/24 20:24	
				0.34				
lethyl acetate	5.0		5.0		ug/L		05/14/24 20:24	
lethyl tert-butyl ether	1.0		1.0	0.22	-		05/14/24 20:24	
1ethylcyclohexane	1.0		1.0	0.71	-		05/14/24 20:24 05/14/24 20:24	
lethylene Chloride	1.0		1.0		ug/L			
tyrene	1.0		1.0		ug/L		05/14/24 20:24	
etrachloroethene	1.0		1.0		ug/L		05/14/24 20:24	
oluene	1.0		1.0		ug/L		05/14/24 20:24	
ans-1,2-Dichloroethene	1.0		1.0		ug/L		05/14/24 20:24	
ans-1,3-Dichloropropene	1.0		1.0		ug/L		05/14/24 20:24	
richloroethene	1.0		1.0		ug/L		05/14/24 20:24	
richlorofluoromethane	1.0		1.0		ug/L		05/14/24 20:24	
inyl chloride	1.0		1.0		ug/L		05/14/24 20:24	
ylenes, Total	2.0		2.0		ug/L		05/14/24 20:24	
-Butylbenzene	1.0		1.0		ug/L		05/14/24 20:24	
,2,4-Trimethylbenzene	1.0		1.0		ug/L		05/14/24 20:24	
ec-Butylbenzene	1.0		1.0		ug/L		05/14/24 20:24	
I-Propylbenzene	1.0		1.0		ug/L		05/14/24 20:24	
I,3,5-Trimethylbenzene	1.0	U	1.0	0.33	ug/L		05/14/24 20:24	

Client Sample ID: MW-21S Date Collected: 05/09/24 15:05 Date Received: 05/09/24 20:00

Lab Sample ID: 460-303613-5 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
tert-Butylbenzene	1.0	U	1.0	0.34	ug/L			05/14/24 20:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	102		70 - 128					05/14/24 20:24	
4-Bromofluorobenzene	95		76 - 120					05/14/24 20:24	
Dibromofluoromethane (Surr)	101		77 - 132					05/14/24 20:24	
Toluene-d8 (Surr)	100		80 - 120					05/14/24 20:24	
Method: SW846 8270E - Se	emivolatile Org	anic Comp	ounds (GC/	(IS)					
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1'-Biphenyl	10		10	1.2	ug/L		05/12/24 09:25		
2,2'-oxybis[1-chloropropane]	10	U	10		ug/L		05/12/24 09:25	05/12/24 14:43	
2,4,5-Trichlorophenol	10	U	10		ug/L		05/12/24 09:25	05/12/24 14:43	
2,4,6-Trichlorophenol	10	U	10		ug/L		05/12/24 09:25	05/12/24 14:43	
2,4-Dichlorophenol	10	U	10		-		05/12/24 09:25	05/12/24 14:43	
2,4-Dimethylphenol	10	U.	10	0.62				05/12/24 14:43	
2,4-Dinitrophenol		U J	40		ug/L			05/12/24 14:43	
2,4-Dinitrotoluene	10	• •	10		ug/L			05/12/24 14:43	
2,6-Dinitrotoluene	2.0	0	2.0	0.83	-			05/12/24 14:43	
2-Chloronaphthalene	10		10		ug/L			05/12/24 14:43	
2-Chlorophenol	10		10	0.38	-			05/12/24 14:43	
2-Methylnaphthalene	10		10	0.53	-			05/12/24 14:43	
2-Methylphenol	10		10		ug/L			05/12/24 14:43	
2-Nitroaniline	10		10	0.47	-			05/12/24 14:43	
2-Nitrophenol	10		10	0.75	-			05/12/24 14:43	
3,3'-Dichlorobenzidine	10		10					05/12/24 14:43	
3-Nitroaniline	10	-	10	1.9	ug/L			05/12/24 14:43	
4,6-Dinitro-2-methylphenol	20		20		ug/L			05/12/24 14:43	
	10		10		ug/L			05/12/24 14:43	
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	10		10	0.75	-			05/12/24 14:43	
4-Chloroaniline	10		10		-			05/12/24 14:43	
					ug/L				
4-Chlorophenyl phenyl ether	10		10		ug/L			05/12/24 14:43	
4-Nitroaniline	10		10		-			05/12/24 14:43	
4-Nitrophenol	20		20		ug/L			05/12/24 14:43	
Acenaphthene	10		10		ug/L			05/12/24 14:43	
Acenaphthylene	10		10	0.82				05/12/24 14:43	
Acetophenone	10		10		ug/L			05/12/24 14:43	
Anthracene	10	,	10		ug/L			05/12/24 14:43	
Atrazine		U	2.0		ug/L			05/12/24 14:43	
Benzaldehyde		U/	10		ug/L			05/12/24 14:43	
Benzo[a]anthracene	1.0		1.0		ug/L			05/12/24 14:43	
Benzo[a]pyrene	1.0		1.0		ug/L			05/12/24 14:43	
Benzo[b]fluoranthene	2.0		2.0		ug/L			05/12/24 14:43	
Benzo[g,h,i]perylene	10		10		ug/L			05/12/24 14:43	
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		05/12/24 09:25	05/12/24 14:43	
Bis(2-chloroethoxy)methane	10	U	10		ug/L		05/12/24 09:25	05/12/24 14:43	
Bis(2-chloroethyl)ether	1.0	U	1.0	0.63	ug/L		05/12/24 09:25	05/12/24 14:43	
Bis(2-ethylhexyl) phthalate	2.0	U	2.0	0.80	ug/L		05/12/24 09:25	05/12/24 14:43	
Butyl benzyl phthalate	10	U	10	0.85	ug/L		05/12/24 09:25	05/12/24 14:43	
Caprolactam	10	U J	10	2.2	ug/L		05/12/24 09:25	05/12/24 14:43	

Lab Sample ID: 460-303613-5 Matrix: Water

05/12/24 09:25 05/12/24 14:43

05/12/24 09:25 05/12/24 14:43

Client Sample ID: MW-21S Date Collected: 05/09/24 15:05

Date Received: 05/09/24 20:00

Phenol-d5 (Surr)

Terphenyl-d14 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbazole	10	U	10	0.68	ug/L		05/12/24 09:25	05/12/24 14:43	1
Chrysene	2.0	U	2.0	0.91	ug/L		05/12/24 09:25	05/12/24 14:43	1
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		05/12/24 09:25	05/12/24 14:43	1
Dibenzofuran	10	U	10	1.1	ug/L		05/12/24 09:25	05/12/24 14:43	1
Diethyl phthalate	10	U	10	0.98	ug/L		05/12/24 09:25	05/12/24 14:43	1
Dimethyl phthalate	10	U	10	0.77	ug/L		05/12/24 09:25	05/12/24 14:43	1
Di-n-butyl phthalate	10	U	10	0.84	ug/L		05/12/24 09:25	05/12/24 14:43	1
Di-n-octyl phthalate	10	U	10	0.75	ug/L		05/12/24 09:25	05/12/24 14:43	1
Fluoranthene	10	U	10	0.84	ug/L		05/12/24 09:25	05/12/24 14:43	1
Fluorene	10	U	10	0.91	ug/L		05/12/24 09:25	05/12/24 14:43	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		05/12/24 09:25	05/12/24 14:43	1
Hexachlorobutadiene	1.0	U	1.0	0.78	ug/L		05/12/24 09:25	05/12/24 14:43	1
Hexachlorocyclopentadiene	10	U	10	3.6	ug/L		05/12/24 09:25	05/12/24 14:43	1
Hexachloroethane	2.0	U	2.0	0.80	ug/L		05/12/24 09:25	05/12/24 14:43	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	ug/L		05/12/24 09:25	05/12/24 14:43	1
Isophorone	10	U	10	0.80	ug/L		05/12/24 09:25	05/12/24 14:43	1
Naphthalene	2.0	U	2.0	0.54	ug/L		05/12/24 09:25	05/12/24 14:43	1
Nitrobenzene	1.0	U	1.0	0.57	ug/L		05/12/24 09:25	05/12/24 14:43	1
N-Nitrosodi-n-propylamine	1.0	U	1.0	0.43	ug/L		05/12/24 09:25	05/12/24 14:43	1
N-Nitrosodiphenylamine	10	U	10	0.89	ug/L		05/12/24 09:25	05/12/24 14:43	1
Pentachlorophenol	20	U J	20	1.4	ug/L		05/12/24 09:25	05/12/24 14:43	1
Phenanthrene	10	U	10	1.3	ug/L		05/12/24 09:25	05/12/24 14:43	1
Phenol	10	U	10	0.29	ug/L		05/12/24 09:25	05/12/24 14:43	1
Pyrene	10	U	10	1.6	ug/L		05/12/24 09:25	05/12/24 14:43	1
3 & 4 Methylphenol	10	U	10	0.64	ug/L		05/12/24 09:25	05/12/24 14:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	117		37 - 150				05/12/24 09:25	05/12/24 14:43	1
2-Fluorobiphenyl	81		46 - 139				05/12/24 09:25	05/12/24 14:43	1
2-Fluorophenol (Surr)	60		16_80				05/12/24 09:25	05/12/24 14:43	1
Nitrobenzene-d5 (Surr)	90		51 - 145				05/12/24 09:25	05/12/24 14:43	1

10_56

13 - 150

41

62

1

1

Eurofins Environment Testing Northeast, LLC

777 New Durham Road Edison, NJ 08817

Chain of Custody Record

Phone (732) 549-3900 Fax (732) 549-3679

	Client Information	Sampl	I AI	ssa R	Hynes	Lab Gilr	PM: more, .	Julie			C	amler Ti	acking N	o(s):	C	OC No:	
	Steven Feldman	Phone		- 297 -		E-M		iore@	let.eur	ofinsus.com						age: age of	<u></u>
	Company: Arcadis of New York, inc.			<u> </u>	·_··		T			Analysis	Requ	leste					677
	Address: 105 Maxess Road Suite N108	Due D	ate Reque	ited:							ΓÌ		TT		100	reservation Cod	es.
	City Melville	TAT R	equested (days): 5 Day			1								ៀន	NHCL NaOH Zn Acetate	M Hexane N None O AsNaO2
	State, Zip: NY 11747	ļ		•,	-							ł	1		þ		P Na2Q4S Q Na2SO3
Ī	Phone: (631) 249-7600	PQ #:	·····								460				F G	MeOH G Amchlor	R Na2S2O3 S H2SO4
	Email: Steven, Feldman@arcadis.com	WO #: 3020	5663.04.()42624			or No)	E.			30367				H L L	ice DI Water	T TSP Dodecahydrate U Acetone V MCAA
	[∋] roject Name: Former Dangman Park MGP Site	Projec 3020	1#: 5663.04	<u> </u>		······································	1 (Yes								Tainer Tainer	EDTA EDA	W pH 4-5 Z other (specify)
	Site Former Dangman Park MGP Site	SSOW	/#:		<u></u>		ered Sample (Yes of using his of New				all u				le com	ther	
Pa	Sample Identification	Sarr	nple Date	Sample Time		Matrix {Woweler, Sapolid, Dawaste/ol BTaTlopuo, A=Air	Field Filtered S	VOCs (82)	100 C 100 C 100		Chainel				Total Number of containers	Special Ir	structions/Note-
ige	TBOSIO24	~1			La gal a gran a corres	tion Code:	<u>P</u> P		<u> 2010-00-00</u>	╺╼╄╼┦╼┦					×-		
931	EB051024		0/24		G	<u>W</u>	NN	1		╾┼╌┽╾┼╴					4		<u></u>
931 of 933	MW-21D		0 <u> 24</u> 10 24	0830	G G	W	NN	1			' -						
ω̈́	DUP051024		0/24		G	W		-	议	╾┫╾╂╼╉╾	┠╼╌┼╸		┼─┼		-	<u>,</u>	NZ
ŀ		-1-	0/207		<u> </u>		†††				┟╼╼┤ ╎	ŗ	<u>_</u>				80
											5-	Da	Ŋ				
[Π				R	US	H				
							\prod				,						
ļ		 						_									
		 					11		$\left \right $						<u></u>		
ļ	Possible Hazard Identification						Ц										
- [Non-Hazard Flammable Skin Irritant Poisc	n B		nown 🗖 R	adiological		S	amp	ie Disp Return	Ta Client			d if sar By Lat			ve For	Months
Ī	Deliverable Requested. 1 II 111, IV Other (specify)					- <u></u>				ctions/QC Requir	_						
1	Empty Kit Relinquished by:			Date:			Time		·			Met	hod of Si				A
L	Relinguished by: Alvosa R. Hynes		10/24	1230		Arcadi	5		ceived				{	Date/Time:	•	*ر ۱	Company
[Relinquished by:	Date/1				Company							1		7	160	Company
Ī	Relinguished by S-	Date/T	ime:	the		Company	/	Ré	ceived by	5-				01/10/24		2000	Company
Ī	Custody Seals Intact Custody Seal No.					- 	,,. <u></u> ,	Co	oler Ten	brature(s) °C and Ot	her Ren	narks:		7/-/ -		<u> </u>	
Ĺ	A de l'X			<u></u>	<u></u>	<u></u>		<u> </u>					نبيدني دن	<u></u>			Ver 01 16/2019

Definitions/Glossary

Client: Arcadis U.S., Inc. Project/Site: Former Dangman Park MGP Site

Quality Control

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

QC RER

RL RPD

TEF

TEQ

TNTC

Job ID: 460-303677-1

	-ormer Dangman Park MGP Site
Qualifiers	
GC/MS VOA	
Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
J	Analyzed for but not detected.
GC/MS Semi	νο
Qualifier	Qualifier Description
,	LCS or LCSD is outside acceptance limits.
Ξ	Compound concentration exceeds the upper level of the calibration range of the instrument for that specific analysis.
J	Analyzed for but not detected.
Glossary	·
Abbreviation	These commonly used abbreviations may or may not be present in this report.
2	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
OD	Limit of Detection (DoD/DOE)
.OQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
/DC	Minimum Detectable Concentration (Radiochemistry)
//DL	Method Detection Limit
ЛL	Minimum Level (Dioxin)
/IPN	Most Probable Number
/IQL	Method Quantitation Limit
1C	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
~ ~	

Client Sample ID: TB051024 Date Collected: 05/10/24 00:00

Date Received: 05/10/24 20:00

Method: SW846 8260D - Volatil Analyte		Qualifier	RL	MDI	Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0		1.0		ug/L		05/15/24 09:03	1
1,1,2,2-Tetrachloroethane	1.0		1.0		ug/L		05/15/24 09:03	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0		1.0		ug/L		05/15/24 09:03	1
1,1,2-Trichloroethane	1.0		1.0		ug/L		05/15/24 09:03	1
1,1-Dichloroethane	1.0		1.0		ug/L		05/15/24 09:03	1
1,1-Dichloroethene	1.0		1.0		ug/L		05/15/24 09:03	1
1,2,4-Trichlorobenzene	1.0		1.0		ug/L		05/15/24 09:03	1
1,2-Dibromo-3-Chloropropane	1.0		1.0		ug/L		05/15/24 09:03	1
1,2-Dichlorobenzene	1.0	-	1.0		ug/L		05/15/24 09:03	1
1,2-Dichloroethane	1.0		1.0		ug/L		05/15/24 09:03	
1,2-Dichloropropane	1.0		1.0		ug/L		05/15/24 09:03	1
1,3-Dichlorobenzene	1.0		1.0		ug/L		05/15/24 09:03	1
1,4-Dichlorobenzene	1.0		1.0		ug/L		05/15/24 09:03	1
1,4-Dioxane	50		50		ug/L		05/15/24 09:03	1
2-Butanone (MEK)	5.0		5.0		ug/L		05/15/24 09:03	1
2-Hexanone	5.0		5.0		ug/L		05/15/24 09:03	 1
4-Methyl-2-pentanone (MIBK)	5.0		5.0		ug/L		05/15/24 09:03	1
Acetone	5.0		5.0		ug/L		05/15/24 09:03	1
Benzene	1.0		1.0		ug/L		05/15/24 09:03	
Bromoform	1.0		1.0		ug/L		05/15/24 09:03	1
Bromomethane	1.0		1.0		ug/L		05/15/24 09:03	1
Carbon disulfide	1.0	.	1.0		ug/L		05/15/24 09:03	' 1
Carbon tetrachloride	1.0		1.0		ug/L		05/15/24 09:03	1
Chlorobenzene	1.0		1.0		ug/L		05/15/24 09:03	1
Dibromochloromethane	1.0		1.0		ug/L		05/15/24 09:03	 1
Chloroethane	1.0		1.0		ug/L		05/15/24 09:03	1
Chloroform	1.0		1.0		ug/L		05/15/24 09:03	1
Chloromethane	1.0		1.0		ug/L		05/15/24 09:03	1
cis-1,2-Dichloroethene	1.0		1.0		ug/L		05/15/24 09:03	1
cis-1,3-Dichloropropene	1.0		1.0		ug/L		05/15/24 09:03	1
Cyclohexane	1.0		1.0		ug/L		05/15/24 09:03	 1
Bromodichloromethane	1.0		1.0		ug/L		05/15/24 09:03	1
Dichlorodifluoromethane	1.0		1.0		ug/L		05/15/24 09:03	1
Ethylbenzene	1.0		1.0		ug/L		05/15/24 09:03	 1
1,2-Dibromoethane	1.0		1.0		ug/L		05/15/24 09:03	1
Isopropylbenzene	1.0		1.0		ug/L		05/15/24 09:03	1
Methyl acetate	5.0		5.0		ug/L		05/15/24 09:03	 1
Methyl tert-butyl ether	1.0		1.0		ug/L		05/15/24 09:03	1
Methylcyclohexane	1.0		1.0		ug/L		05/15/24 09:03	1
Methylene Chloride	1.0		1.0		ug/L		05/15/24 09:03	'1
Styrene	1.0		1.0		ug/L		05/15/24 09:03	1
Tetrachloroethene	1.0		1.0		ug/L		05/15/24 09:03	1
Toluene	1.0		1.0		ug/L		05/15/24 09:03	י 1
trans-1,2-Dichloroethene	1.0		1.0		ug/L		05/15/24 09:03	י 1
trans-1,3-Dichloropropene	1.0		1.0		ug/L ug/L		05/15/24 09:03	י 1
Trichloroethene	1.0		1.0		ug/∟ ug/L		05/15/24 09:03	י 1
Trichlorofluoromethane	1.0		1.0		ug/∟ ug/L			
					-		05/15/24 09:03	1
Vinyl chloride n-Butylbenzene	1.0 1.0		1.0 1.0		ug/L ug/L		05/15/24 09:03 05/15/24 09:03	1

Job ID: 460-303677-1

Lab Sample ID: 460-303677-1 Matrix: Water

Method: SW846 8260D - Volatile Organic Compounds by GC/MS (Continued)

101

Lab Sample ID: 460-303677-1 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trimethylbenzene	1.0	U	1.0	0.37	ug/L			05/15/24 09:03	1
sec-Butylbenzene	1.0	U	1.0	0.37	ug/L			05/15/24 09:03	1
N-Propylbenzene	1.0	U	1.0	0.32	ug/L			05/15/24 09:03	1
Xylenes, Total	2.0	U	2.0	0.65	ug/L			05/15/24 09:03	1
1,3,5-Trimethylbenzene	1.0	U	1.0	0.33	ug/L			05/15/24 09:03	1
tert-Butylbenzene	1.0	U	1.0	0.34	ug/L			05/15/24 09:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		70 - 128			-		05/15/24 09:03	1
4-Bromofluorobenzene	94		76 - 120					05/15/24 09:03	1
Dibromofluoromethane (Surr)	100		77 - 132					05/15/24 09:03	1

80 - 120

Client Sample ID: EB051024

Date Collected: 05/10/24 08:30 Date Received: 05/10/24 20:00

Toluene-d8 (Surr)

Lab Sample ID: 460-303677-2

05/15/24 09:03

Matrix: Water

1

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0 U	1.0	0.24 ug/L			05/15/24 09:22	1
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.37 ug/L			05/15/24 09:22	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0 U	1.0	0.31 ug/L			05/15/24 09:22	1
1,1,2-Trichloroethane	1.0 U	1.0	0.20 ug/L			05/15/24 09:22	1
1,1-Dichloroethane	1.0 U	1.0	0.26 ug/L			05/15/24 09:22	1
1,1-Dichloroethene	1.0 U	1.0	0.26 ug/L			05/15/24 09:22	1
1,2,4-Trichlorobenzene	1.0 U	1.0	0.37 ug/L			05/15/24 09:22	1
1,2-Dibromo-3-Chloropropane	1.0 U J	1.0	0.38 ug/L			05/15/24 09:22	1
1,2-Dichlorobenzene	1.0 U	1.0	0.21 ug/L			05/15/24 09:22	1
1,2-Dichloroethane	1.0 U	1.0	0.43 ug/L			05/15/24 09:22	1
1,2-Dichloropropane	1.0 U	1.0	0.35 ug/L			05/15/24 09:22	1
1,3-Dichlorobenzene	1.0 U	1.0	0.34 ug/L			05/15/24 09:22	1
1,4-Dichlorobenzene	1.0 U	1.0	0.33 ug/L			05/15/24 09:22	1
1,4-Dioxane	50 U	50	28 ug/L			05/15/24 09:22	1
2-Butanone (MEK)	5.0 U	5.0	1.9 ug/L			05/15/24 09:22	1
2-Hexanone	5.0 U	5.0	1.1 ug/L			05/15/24 09:22	1
4-Methyl-2-pentanone (MIBK)	5.0 U	5.0	1.3 ug/L			05/15/24 09:22	1
Acetone	5.5	5.0	4.4 ug/L			05/15/24 09:22	1
Benzene	1.0 U	1.0	0.20 ug/L			05/15/24 09:22	1
Bromoform	1.0 U J	1.0	0.54 ug/L			05/15/24 09:22	1
Bromomethane	1.0 U	1.0	0.55 ug/L			05/15/24 09:22	1
Carbon disulfide	1.0 U	1.0	0.82 ug/L			05/15/24 09:22	1
Carbon tetrachloride	1.0 U	1.0	0.21 ug/L			05/15/24 09:22	1
Chlorobenzene	1.0 U	1.0	0.38 ug/L			05/15/24 09:22	1
Dibromochloromethane	1.0 U	1.0	0.28 ug/L			05/15/24 09:22	1
Chloroethane	1.0 U	1.0	0.32 ug/L			05/15/24 09:22	1
Chloroform	1.0 U	1.0	0.33 ug/L			05/15/24 09:22	1
Chloromethane	1.0 U	1.0	0.40 ug/L			05/15/24 09:22	1
cis-1,2-Dichloroethene	1.0 U	1.0	0.22 ug/L			05/15/24 09:22	1
cis-1,3-Dichloropropene	1.0 U	1.0	0.22 ug/L			05/15/24 09:22	1
Cyclohexane	1.0 U	1.0	0.32 ug/L			05/15/24 09:22	1

Date Received: 05/10/24 20:00

Method: SW846 8260D - Vola	Method: SW846 8260D - Volatile Organic Compounds by GC/MS (Continued)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed			
Bromodichloromethane	1.0	U	1.0	0.34	ug/L			05/15/24 09:22			
Dichlorodifluoromethane	1.0	U J	1.0	0.31	ug/L			05/15/24 09:22			
Ethylbenzene	1.0	U	1.0	0.30	ug/L			05/15/24 09:22			
1,2-Dibromoethane	1.0	U	1.0	0.50	ug/L			05/15/24 09:22			

,			J		
Isopropylbenzene	1.0 U	1.0	0.34 ug/L	05/15/24 09:22	1
Methyl acetate	5.0 U	5.0	0.79 ug/L	05/15/24 09:22	1
Methyl tert-butyl ether	1.0 U	1.0	0.22 ug/L	05/15/24 09:22	1
Methylcyclohexane	1.0 U	1.0	0.71 ug/L	05/15/24 09:22	1
Methylene Chloride	1.0 U	1.0	0.32 ug/L	05/15/24 09:22	1
Styrene	1.0 U	1.0	0.42 ug/L	05/15/24 09:22	1
Tetrachloroethene	1.0 U	1.0	0.25 ug/L	05/15/24 09:22	1
Toluene	1.0 U	1.0	0.38 ug/L	05/15/24 09:22	1
trans-1,2-Dichloroethene	1.0 U	1.0	0.24 ug/L	05/15/24 09:22	1
trans-1,3-Dichloropropene	1.0 U	1.0	0.22 ug/L	05/15/24 09:22	1
Trichloroethene	1.0 U	1.0	0.31 ug/L	05/15/24 09:22	1
Trichlorofluoromethane	1.0 U	1.0	0.32 ug/L	05/15/24 09:22	1
Vinyl chloride	1.0 U	1.0	0.17 ug/L	05/15/24 09:22	1
n-Butylbenzene	1.0 U	1.0	0.32 ug/L	05/15/24 09:22	1
1,2,4-Trimethylbenzene	1.0 U	1.0	0.37 ug/L	05/15/24 09:22	1
sec-Butylbenzene	1.0 U	1.0	0.37 ug/L	05/15/24 09:22	1
N-Propylbenzene	1.0 U	1.0	0.32 ug/L	05/15/24 09:22	1
Xylenes, Total	2.0 U	2.0	0.65 ug/L	05/15/24 09:22	1
1,3,5-Trimethylbenzene	1.0 U	1.0	0.33 ug/L	05/15/24 09:22	1
tert-Butylbenzene	1.0 U	1.0	0.34 ug/L	05/15/24 09:22	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		70 - 128		05/15/24 09:22	1
4-Bromofluorobenzene	96		76 - 120		05/15/24 09:22	1
Dibromofluoromethane (Surr)	101		77 - 132		05/15/24 09:22	1
Toluene-d8 (Surr)	102		80 - 120		05/15/24 09:22	1

Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	10	U	10	1.2	ug/L		05/12/24 09:25	05/12/24 15:05	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		05/12/24 09:25	05/12/24 15:05	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		05/12/24 09:25	05/12/24 15:05	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		05/12/24 09:25	05/12/24 15:05	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		05/12/24 09:25	05/12/24 15:05	1
2,4-Dimethylphenol	10	U,	10	0.62	ug/L		05/12/24 09:25	05/12/24 15:05	1
2,4-Dinitrophenol	40	U/ J	40	2.6	ug/L		05/12/24 09:25	05/12/24 15:05	1
2,4-Dinitrotoluene	10	U J	10	1.0	ug/L		05/12/24 09:25	05/12/24 15:05	1
2,6-Dinitrotoluene	2.0	U J	2.0	0.83	ug/L		05/12/24 09:25	05/12/24 15:05	1
2-Chloronaphthalene	10	U	10	1.2	ug/L		05/12/24 09:25	05/12/24 15:05	1
2-Chlorophenol	10	U	10	0.38	ug/L		05/12/24 09:25	05/12/24 15:05	1
2-Methylnaphthalene	10	U	10	0.53	ug/L		05/12/24 09:25	05/12/24 15:05	1
2-Methylphenol	10	U	10	0.67	ug/L		05/12/24 09:25	05/12/24 15:05	1
2-Nitroaniline	10	U	10	0.47	ug/L		05/12/24 09:25	05/12/24 15:05	1
2-Nitrophenol	10	U	10	0.75	ug/L		05/12/24 09:25	05/12/24 15:05	1
3,3'-Dichlorobenzidine	10	U	10	1.4	ug/L		05/12/24 09:25	05/12/24 15:05	1
3-Nitroaniline	10	U J	10	1.9	ug/L		05/12/24 09:25	05/12/24 15:05	1

Job ID: 460-303677-1

Dil Fac

1

1

1

1

Lab Sample ID: 460-303677-2 Matrix: Water

Lab Sample ID: 460-303677-2 Matrix: Water

Client Sample ID: EB051024 Date Collected: 05/10/24 08:30

Date Received: 05/10/24 20:00

Method: SW846 8270E - Sem Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
4,6-Dinitro-2-methylphenol	20	U J	20	3.0	ug/L		05/12/24 09:25	05/12/24 15:05	
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		05/12/24 09:25	05/12/24 15:05	
4-Chloro-3-methylphenol	10	U	10	0.58	ug/L		05/12/24 09:25	05/12/24 15:05	
4-Chloroaniline	10	U J	10	1.9	ug/L		05/12/24 09:25	05/12/24 15:05	
4-Chlorophenyl phenyl ether	10		10	1.3	ug/L		05/12/24 09:25	05/12/24 15:05	
4-Nitroaniline	10	U J	10	1.2	ug/L		05/12/24 09:25	05/12/24 15:05	
4-Nitrophenol	20	U	20	4.0	ug/L		05/12/24 09:25	05/12/24 15:05	
Acenaphthene	10	U	10	1.1	ug/L		05/12/24 09:25	05/12/24 15:05	
Acenaphthylene	10	U	10	0.82	ug/L		05/12/24 09:25	05/12/24 15:05	
Acetophenone	10	U	10		ug/L		05/12/24 09:25	05/12/24 15:05	
Anthracene	10	U	10		ug/L		05/12/24 09:25	05/12/24 15:05	
Atrazine	2.0	υ /	2.0		ug/L		05/12/24 09:25	05/12/24 15:05	
Benzaldehyde		U	10		ug/L		05/12/24 09:25	05/12/24 15:05	
Benzo[a]anthracene	1.0		1.0	0.59			05/12/24 09:25	05/12/24 15:05	
Benzo[a]pyrene	1.0	U	1.0	0.41	-			05/12/24 15:05	
Benzo[b]fluoranthene	2.0		2.0	0.68	-			05/12/24 15:05	
Benzo[g,h,i]perylene	10		10	0.70				05/12/24 15:05	
Benzo[k]fluoranthene	1.0	U	1.0	0.67	-			05/12/24 15:05	
Bis(2-chloroethoxy)methane	10	U	10	0.59	-			05/12/24 15:05	
Bis(2-chloroethyl)ether	1.0	U	1.0	0.63				05/12/24 15:05	
Bis(2-ethylhexyl) phthalate	2.0		2.0	0.80	-			05/12/24 15:05	
Butyl benzyl phthalate	10		10	0.85	-			05/12/24 15:05	
Caprolactam	10	U J	10		ug/L			05/12/24 15:05	
Carbazole	10	-	10	0.68	-			05/12/24 15:05	
Chrysene	2.0	U	2.0	0.91	-			05/12/24 15:05	
Dibenz(a,h)anthracene	1.0		1.0	0.72				05/12/24 15:05	
Dibenzofuran	10		10		ug/L			05/12/24 15:05	
Diethyl phthalate	10	U	10	0.98	-			05/12/24 15:05	
Dimethyl phthalate	10		10	0.77				05/12/24 15:05	
Di-n-butyl phthalate	10		10	0.84	-			05/12/24 15:05	
Di-n-octyl phthalate	10		10	0.75	0			05/12/24 15:05	
Fluoranthene	10		10	0.84				05/12/24 15:05	
Fluorene	10		10	0.91	•			05/12/24 15:05	
Hexachlorobenzene	1.0	U	1.0	0.40	-			05/12/24 15:05	
Hexachlorobutadiene	1.0		1.0	0.78				05/12/24 15:05	
Hexachlorocyclopentadiene	10		10		ug/L			05/12/24 15:05	
Hexachloroethane	2.0		2.0	0.80				05/12/24 15:05	
Indeno[1,2,3-cd]pyrene	2.0		2.0	0.94				05/12/24 15:05	
Isophorone	10		10	0.80				05/12/24 15:05	
Naphthalene	2.0		2.0	0.54	-			05/12/24 15:05	
Nitrobenzene	1.0		1.0	0.54				05/12/24 15:05	
N-Nitrosodi-n-propylamine	1.0		1.0	0.37	-			05/12/24 15:05	
N-Nitrosodiphenylamine	1.0		10	0.43	-			05/12/24 15:05	
Pentachlorophenol	20		20		ug/L ug/L			05/12/24 15:05	
Phenanthrene	20 10		20 10		ug/L ug/L			05/12/24 15:05	
Phenol	10		10	0.29	-			05/12/24 15:05	
Pyrene	10		10		ug/L ug/L			05/12/24 15:05	
3 & 4 Methylphenol	10		10		ug/L ug/L			05/12/24 15:05	

Matrix: Water

Client Sample ID: EB051024 Date Collected: 05/10/24 08:30 Date Received: 05/10/24 20:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	113	37 - 150	05/12/24 09:25 05	5/12/24 15:05	1
2-Fluorobiphenyl	82	46 - 139	05/12/24 09:25 05	5/12/24 15:05	1
2-Fluorophenol (Surr)	65	16 - 80	05/12/24 09:25 05	5/12/24 15:05	1
Nitrobenzene-d5 (Surr)	89	51 - 145	05/12/24 09:25 05	5/12/24 15:05	1
Phenol-d5 (Surr)	46	10 - 56	05/12/24 09:25 05	5/12/24 15:05	1
Terphenyl-d14 (Surr)	53	13 - 150	05/12/24 09:25 05	5/12/24 15:05	1

Client Sample ID: MW-21D Date Collected: 05/10/24 09:30

Date Received: 05/10/24 20:00

Lab Sample ID: 460-303677-3 Matrix: Water

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			05/15/24 10:41	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.37	ug/L			05/15/24 10:41	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.31	ug/L			05/15/24 10:41	1
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			05/15/24 10:41	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			05/15/24 10:41	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			05/15/24 10:41	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.37	ug/L			05/15/24 10:41	1
1,2-Dibromo-3-Chloropropane	1.0	U J	1.0	0.38	ug/L			05/15/24 10:41	1
1,2-Dichlorobenzene	1.0	U	1.0	0.21	ug/L			05/15/24 10:41	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			05/15/24 10:41	1
1,2-Dichloropropane	1.0	U	1.0	0.35	ug/L			05/15/24 10:41	1
1,3-Dichlorobenzene	1.0	U	1.0	0.34	ug/L			05/15/24 10:41	1
1,4-Dichlorobenzene	1.0	U	1.0	0.33	ug/L			05/15/24 10:41	1
1,4-Dioxane	50	U	50	28	ug/L			05/15/24 10:41	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			05/15/24 10:41	1
2-Hexanone	5.0	U	5.0	1.1	ug/L			05/15/24 10:41	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	1.3	ug/L			05/15/24 10:41	1
Acetone	5.0	U	5.0	4.4	ug/L			05/15/24 10:41	1
Benzene	1.0	U	1.0	0.20	ug/L			05/15/24 10:41	1
Bromoform	1.0	U, J	1.0	0.54	ug/L			05/15/24 10:41	1
Bromomethane	1.0	U	1.0	0.55	ug/L			05/15/24 10:41	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			05/15/24 10:41	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			05/15/24 10:41	1
Chlorobenzene	1.0	U	1.0	0.38	ug/L			05/15/24 10:41	1
Dibromochloromethane	1.0	U	1.0	0.28	ug/L			05/15/24 10:41	1
Chloroethane	1.0	U	1.0	0.32	ug/L			05/15/24 10:41	1
Chloroform	1.7		1.0	0.33	ug/L			05/15/24 10:41	1
Chloromethane	1.0	U	1.0	0.40	ug/L			05/15/24 10:41	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			05/15/24 10:41	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			05/15/24 10:41	1
Cyclohexane	1.0	U	1.0	0.32	ug/L			05/15/24 10:41	1
Bromodichloromethane	1.0	U	1.0	0.34	ug/L			05/15/24 10:41	1
Dichlorodifluoromethane	1.0	U	1.0	0.31	ug/L			05/15/24 10:41	1
Ethylbenzene	1.0	U	1.0	0.30				05/15/24 10:41	1
1,2-Dibromoethane	1.0	U	1.0	0.50	-			05/15/24 10:41	1
Isopropylbenzene	1.0	U	1.0		ug/L			05/15/24 10:41	1
Methyl acetate	5.0	U	5.0	0.79	ug/L			05/15/24 10:41	1

Lab Sample ID: 460-303677-2

05/15/24 10:41

05/15/24 10:41

1

1

Client Sample ID: MW-21D Date Collected: 05/10/24 09:30

Date Received: 05/10/24 20:00

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 460-303677-3 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	1.0	U	1.0	0.22	ug/L			05/15/24 10:41	1
Methylcyclohexane	1.0	U	1.0	0.71	ug/L			05/15/24 10:41	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			05/15/24 10:41	1
Styrene	1.0	U	1.0	0.42	ug/L			05/15/24 10:41	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			05/15/24 10:41	1
Toluene	1.0	U	1.0	0.38	ug/L			05/15/24 10:41	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			05/15/24 10:41	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			05/15/24 10:41	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			05/15/24 10:41	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			05/15/24 10:41	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			05/15/24 10:41	1
n-Butylbenzene	1.0	U	1.0	0.32	ug/L			05/15/24 10:41	1
1,2,4-Trimethylbenzene	1.0	U	1.0	0.37	ug/L			05/15/24 10:41	1
sec-Butylbenzene	1.0	U	1.0	0.37	ug/L			05/15/24 10:41	1
N-Propylbenzene	1.0	U	1.0	0.32	ug/L			05/15/24 10:41	1
Xylenes, Total	2.0	U	2.0	0.65	ug/L			05/15/24 10:41	1
1,3,5-Trimethylbenzene	1.0	U	1.0	0.33	ug/L			05/15/24 10:41	1
tert-Butylbenzene	1.0	U	1.0	0.34	ug/L			05/15/24 10:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		70 - 128					05/15/24 10:41	1
4-Bromofluorobenzene	96		76 - 120					05/15/24 10:41	1

77 - 132

80 - 120

Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS)

101

102

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	10	U	10	1.2	ug/L		05/12/24 09:25	05/12/24 15:26	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		05/12/24 09:25	05/12/24 15:26	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		05/12/24 09:25	05/12/24 15:26	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		05/12/24 09:25	05/12/24 15:26	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		05/12/24 09:25	05/12/24 15:26	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		05/12/24 09:25	05/12/24 15:26	1
2,4-Dinitrophenol	40	U J	40	2.6	ug/L		05/12/24 09:25	05/12/24 15:26	1
2,4-Dinitrotoluene	10	U J	10	1.0	ug/L		05/12/24 09:25	05/12/24 15:26	1
2,6-Dinitrotoluene	2.0	U J	2.0	0.83	ug/L		05/12/24 09:25	05/12/24 15:26	1
2-Chloronaphthalene	10	U	10	1.2	ug/L		05/12/24 09:25	05/12/24 15:26	1
2-Chlorophenol	10	U	10	0.38	ug/L		05/12/24 09:25	05/12/24 15:26	1
2-Methylnaphthalene	10	U	10	0.53	ug/L		05/12/24 09:25	05/12/24 15:26	1
2-Methylphenol	10	U	10	0.67	ug/L		05/12/24 09:25	05/12/24 15:26	1
2-Nitroaniline	10	U	10	0.47	ug/L		05/12/24 09:25	05/12/24 15:26	1
2-Nitrophenol	10	U	10	0.75	ug/L		05/12/24 09:25	05/12/24 15:26	1
3,3'-Dichlorobenzidine	10	U	10	1.4	ug/L		05/12/24 09:25	05/12/24 15:26	1
3-Nitroaniline	10	U <mark>J</mark>	10	1.9	ug/L		05/12/24 09:25	05/12/24 15:26	1
4,6-Dinitro-2-methylphenol	20	U J	20	3.0	ug/L		05/12/24 09:25	05/12/24 15:26	1
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		05/12/24 09:25	05/12/24 15:26	1
4-Chloro-3-methylphenol	10	U	10	0.58	ug/L		05/12/24 09:25	05/12/24 15:26	1
4-Chloroaniline	10	U J	10	1.9	ug/L		05/12/24 09:25	05/12/24 15:26	1
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		05/12/24 09:25	05/12/24 15:26	1
4-Nitroaniline	10	U J	10	1.2	ug/L		05/12/24 09:25	05/12/24 15:26	1

Lab Sample ID: 460-303677-3 Matrix: Water

Client Sample ID: MW-21D Date Collected: 05/10/24 09:30 Date Received: 05/10/24 20:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	20	U	20	4.0	ug/L		05/12/24 09:25	05/12/24 15:26	
Acenaphthene	10	U	10	1.1	ug/L		05/12/24 09:25	05/12/24 15:26	1
Acenaphthylene	10	U	10	0.82	ug/L		05/12/24 09:25	05/12/24 15:26	1
Acetophenone	10	U	10	2.3	ug/L		05/12/24 09:25	05/12/24 15:26	1
Anthracene	10	U	10	1.3	ug/L		05/12/24 09:25	05/12/24 15:26	1
Atrazine	2.0	U *	2.0	1.3	ug/L		05/12/24 09:25	05/12/24 15:26	1
Benzaldehyde	10	U 🎢	10	2.1	ug/L		05/12/24 09:25	05/12/24 15:26	1
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		05/12/24 09:25	05/12/24 15:26	1
Benzo[a]pyrene	1.0	U	1.0	0.41	ug/L		05/12/24 09:25	05/12/24 15:26	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		05/12/24 09:25	05/12/24 15:26	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		05/12/24 09:25	05/12/24 15:26	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		05/12/24 09:25	05/12/24 15:26	1
Bis(2-chloroethoxy)methane	10	U	10	0.59	ug/L		05/12/24 09:25	05/12/24 15:26	1
Bis(2-chloroethyl)ether	1.0	U	1.0	0.63	ug/L		05/12/24 09:25	05/12/24 15:26	1
Bis(2-ethylhexyl) phthalate	2.0	U	2.0	0.80	ug/L		05/12/24 09:25	05/12/24 15:26	1
Butyl benzyl phthalate	10	U	10	0.85	ug/L		05/12/24 09:25	05/12/24 15:26	1
Caprolactam	10	U J	10	2.2	ug/L		05/12/24 09:25	05/12/24 15:26	1
Carbazole	10	U	10	0.68	ug/L		05/12/24 09:25	05/12/24 15:26	1
Chrysene	2.0	U	2.0	0.91	ug/L		05/12/24 09:25	05/12/24 15:26	1
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		05/12/24 09:25	05/12/24 15:26	1
Dibenzofuran	10	U	10	1.1	ug/L		05/12/24 09:25	05/12/24 15:26	1
Diethyl phthalate	10	U	10	0.98	ug/L		05/12/24 09:25	05/12/24 15:26	1
Dimethyl phthalate	10	U	10	0.77	ug/L		05/12/24 09:25	05/12/24 15:26	1
Di-n-butyl phthalate	10	U	10	0.84	ug/L		05/12/24 09:25	05/12/24 15:26	1
Di-n-octyl phthalate	10	U	10	0.75	ug/L		05/12/24 09:25	05/12/24 15:26	1
Fluoranthene	10	U	10	0.84	ug/L		05/12/24 09:25	05/12/24 15:26	1
Fluorene	10	U	10	0.91	ug/L		05/12/24 09:25	05/12/24 15:26	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		05/12/24 09:25	05/12/24 15:26	1
Hexachlorobutadiene	1.0	U	1.0	0.78	ug/L		05/12/24 09:25	05/12/24 15:26	1
Hexachlorocyclopentadiene	10	U	10	3.6	ug/L		05/12/24 09:25	05/12/24 15:26	1
Hexachloroethane	2.0	U	2.0	0.80	ug/L		05/12/24 09:25	05/12/24 15:26	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	ug/L		05/12/24 09:25	05/12/24 15:26	1
Isophorone	10	U	10	0.80	ug/L		05/12/24 09:25	05/12/24 15:26	1
Naphthalene	2.0	U	2.0	0.54	ug/L		05/12/24 09:25	05/12/24 15:26	1
Nitrobenzene	1.0	U	1.0	0.57	ug/L		05/12/24 09:25	05/12/24 15:26	1
N-Nitrosodi-n-propylamine	1.0	U	1.0	0.43	ug/L		05/12/24 09:25	05/12/24 15:26	1
N-Nitrosodiphenylamine	10	U	10	0.89	ug/L		05/12/24 09:25	05/12/24 15:26	1
Pentachlorophenol	20	U J	20	1.4	ug/L		05/12/24 09:25	05/12/24 15:26	1
Phenanthrene	10	U	10	1.3	ug/L		05/12/24 09:25	05/12/24 15:26	1
Phenol	10	U	10	0.29	ug/L		05/12/24 09:25	05/12/24 15:26	1
Pyrene	10	U	10	1.6	ug/L		05/12/24 09:25	05/12/24 15:26	1
3 & 4 Methylphenol	10	U	10	0.64	ug/L		05/12/24 09:25	05/12/24 15:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	115		37 - 150					05/12/24 15:26	1
			46 400				05/40/04 00.05	05/10/04 15:06	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzea	DII Fac
2,4,6-Tribromophenol (Surr)	115	37 - 150	05/12/24 09:25	05/12/24 15:26	1
2-Fluorobiphenyl	75	46 - 139	05/12/24 09:25	05/12/24 15:26	1
2-Fluorophenol (Surr)	49	16-80	05/12/24 09:25	05/12/24 15:26	1
Nitrobenzene-d5 (Surr)	86	51 - 145	05/12/24 09:25	05/12/24 15:26	1
Phenol-d5 (Surr)	32	10 - 56	05/12/24 09:25	05/12/24 15:26	1
Terphenyl-d14 (Surr)	55	13 - 150	05/12/24 09:25	05/12/24 15:26	1

Client Sample ID: DUP051024 Date Collected: 05/10/24 00:00

Date Received: 05/10/24 20:00

Lab Sample ID: 460-303677-4 Matrix: Water

Method: SW846 8260D - Volatil Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			05/15/24 11:01	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.37	ug/L			05/15/24 11:01	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.31	ug/L			05/15/24 11:01	1
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			05/15/24 11:01	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			05/15/24 11:01	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			05/15/24 11:01	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.37	ug/L			05/15/24 11:01	1
1,2-Dibromo-3-Chloropropane	1.0	U J	1.0	0.38	ug/L			05/15/24 11:01	1
1,2-Dichlorobenzene	1.0	U	1.0	0.21	ug/L			05/15/24 11:01	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			05/15/24 11:01	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			05/15/24 11:01	1
1,3-Dichlorobenzene	1.0	U	1.0	0.34	ug/L			05/15/24 11:01	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			05/15/24 11:01	1
1,4-Dioxane	50	U	50		ug/L			05/15/24 11:01	
2-Butanone (MEK)	5.0	U	5.0		ug/L			05/15/24 11:01	1
2-Hexanone	5.0		5.0		ug/L			05/15/24 11:01	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0		ug/L			05/15/24 11:01	1
Acetone	5.0	U	5.0		ug/L			05/15/24 11:01	1
Benzene	1.0	U	1.0		ug/L			05/15/24 11:01	1
Bromoform		U,J	1.0		ug/L			05/15/24 11:01	
Bromomethane		U/*	1.0		ug/L			05/15/24 11:01	
Carbon disulfide	1.0		1.0		ug/L			05/15/24 11:01	
Carbon tetrachloride	1.0		1.0		ug/L			05/15/24 11:01	
Chlorobenzene	1.0		1.0		ug/L			05/15/24 11:01	
Dibromochloromethane	1.0		1.0		ug/L			05/15/24 11:01	
Chloroethane	1.0		1.0		ug/L			05/15/24 11:01	
Chloroform	1.7	0	1.0		ug/L			05/15/24 11:01	
Chloromethane	1.0		1.0		ug/L			05/15/24 11:01	
cis-1,2-Dichloroethene	1.0		1.0		ug/L			05/15/24 11:01	
cis-1,3-Dichloropropene	1.0		1.0		ug/L			05/15/24 11:01	
Cyclohexane	1.0		1.0		ug/L			05/15/24 11:01	
Bromodichloromethane	1.0		1.0		ug/L			05/15/24 11:01	
Dichlorodifluoromethane	1.0		1.0		ug/L			05/15/24 11:01	
Ethylbenzene	1.0		1.0		ug/L			05/15/24 11:01	
1,2-Dibromoethane	1.0		1.0		ug/L			05/15/24 11:01	
Isopropylbenzene	1.0		1.0		ug/L			05/15/24 11:01	
Methyl acetate	5.0		5.0		ug/L			05/15/24 11:01	
Methyl tert-butyl ether	1.0		1.0		ug/L			05/15/24 11:01	
Methylcyclohexane	1.0		1.0		ug/L			05/15/24 11:01	
Methylene Chloride	1.0		1.0		ug/L			05/15/24 11:01	
Styrene	1.0		1.0		ug/L			05/15/24 11:01	
Tetrachloroethene	1.0		1.0		ug/L			05/15/24 11:01	
Toluene	1.0		1.0		ug/L ug/L			05/15/24 11:01	
trans-1,2-Dichloroethene	1.0		1.0		ug/L			05/15/24 11:01	
	1.0		1.0		-			05/15/24 11:01	
trans-1,3-Dichloropropene Trichloroethene	1.0				ug/L			05/15/24 11:01	
Trichlorofluoromethane			1.0 1.0		ug/L				ĺ
	1.0		1.0 1.0		ug/L			05/15/24 11:01	ĺ
Vinyl chloride n-Butylbenzene	1.0 1.0		1.0 1.0	0.17	ug/L			05/15/24 11:01 05/15/24 11:01	

Client Sample ID: DUP051024 Date Collected: 05/10/24 00:00 Date Received: 05/10/24 20:00

Toluene-d8 (Surr)

Lab Sample ID: 460-303677-4 Matrix: Water

05/15/24 11:01

1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trimethylbenzene	1.0	U	1.0	0.37	ug/L			05/15/24 11:01	1
sec-Butylbenzene	1.0	U	1.0	0.37	ug/L			05/15/24 11:01	1
N-Propylbenzene	1.0	U	1.0	0.32	ug/L			05/15/24 11:01	1
Xylenes, Total	2.0	U	2.0	0.65	ug/L			05/15/24 11:01	1
1,3,5-Trimethylbenzene	1.0	U	1.0	0.33	ug/L			05/15/24 11:01	1
tert-Butylbenzene	1.0	U	1.0	0.34	ug/L			05/15/24 11:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		70 - 128					05/15/24 11:01	1
4-Bromofluorobenzene	97		76 - 120					05/15/24 11:01	1
Dibromofluoromethane (Surr)	102		77 - 132					05/15/24 11:01	1

80 - 120

Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS)

101

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	10	U	10	1.2	ug/L		05/12/24 09:25	05/12/24 15:47	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		05/12/24 09:25	05/12/24 15:47	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		05/12/24 09:25	05/12/24 15:47	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		05/12/24 09:25	05/12/24 15:47	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		05/12/24 09:25	05/12/24 15:47	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		05/12/24 09:25	05/12/24 15:47	1
2,4-Dinitrophenol	40	U J	40	2.6	ug/L		05/12/24 09:25	05/12/24 15:47	1
2,4-Dinitrotoluene	10	U J	10	1.0	ug/L		05/12/24 09:25	05/12/24 15:47	1
2,6-Dinitrotoluene	2.0	U J	2.0	0.83	ug/L		05/12/24 09:25	05/12/24 15:47	1
2-Chloronaphthalene	10	U	10	1.2	ug/L		05/12/24 09:25	05/12/24 15:47	1
2-Chlorophenol	10	U	10	0.38	ug/L		05/12/24 09:25	05/12/24 15:47	1
2-Methylnaphthalene	10	U	10	0.53	ug/L		05/12/24 09:25	05/12/24 15:47	1
2-Methylphenol	10	U	10	0.67	ug/L		05/12/24 09:25	05/12/24 15:47	1
2-Nitroaniline	10	U	10	0.47	ug/L		05/12/24 09:25	05/12/24 15:47	1
2-Nitrophenol	10	U	10	0.75	ug/L		05/12/24 09:25	05/12/24 15:47	1
3,3'-Dichlorobenzidine	10	U	10	1.4	ug/L		05/12/24 09:25	05/12/24 15:47	1
3-Nitroaniline	10	U J	10	1.9	ug/L		05/12/24 09:25	05/12/24 15:47	1
4,6-Dinitro-2-methylphenol	20	U J	20	3.0	ug/L		05/12/24 09:25	05/12/24 15:47	1
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		05/12/24 09:25	05/12/24 15:47	1
4-Chloro-3-methylphenol	10	U	10	0.58	ug/L		05/12/24 09:25	05/12/24 15:47	1
4-Chloroaniline	10	U	10	1.9	ug/L		05/12/24 09:25	05/12/24 15:47	1
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		05/12/24 09:25	05/12/24 15:47	1
4-Nitroaniline	10	U J	10	1.2	ug/L		05/12/24 09:25	05/12/24 15:47	1
4-Nitrophenol	20	U	20	4.0	ug/L		05/12/24 09:25	05/12/24 15:47	1
Acenaphthene	10	U	10	1.1	ug/L		05/12/24 09:25	05/12/24 15:47	1
Acenaphthylene	10	U	10	0.82	ug/L		05/12/24 09:25	05/12/24 15:47	1
Acetophenone	10	U	10	2.3	ug/L		05/12/24 09:25	05/12/24 15:47	1
Anthracene	10	U	10	1.3	ug/L		05/12/24 09:25	05/12/24 15:47	1
Atrazine	2.0	U,	2.0	1.3	ug/L		05/12/24 09:25	05/12/24 15:47	1
Benzaldehyde	10	U	10	2.1	ug/L		05/12/24 09:25	05/12/24 15:47	1
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		05/12/24 09:25	05/12/24 15:47	1
Benzo[a]pyrene	1.0	U	1.0	0.41	ug/L		05/12/24 09:25	05/12/24 15:47	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		05/12/24 09:25	05/12/24 15:47	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		05/12/24 09:25	05/12/24 15:47	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		05/12/24 09:25	05/12/24 15:47	1

Client Sample ID: DUP051024

Date Collected: 05/10/24 00:00 Date Received: 05/10/24 20:00

Terphenyl-d14 (Surr)

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-chloroethoxy)methane	10	U	10	0.59	ug/L		05/12/24 09:25	05/12/24 15:47	1
Bis(2-chloroethyl)ether	1.0	U	1.0	0.63	ug/L		05/12/24 09:25	05/12/24 15:47	1
Bis(2-ethylhexyl) phthalate	2.0	U	2.0	0.80	ug/L		05/12/24 09:25	05/12/24 15:47	1
Butyl benzyl phthalate	10	U	10	0.85	ug/L		05/12/24 09:25	05/12/24 15:47	1
Caprolactam	10	U J	10	2.2	ug/L		05/12/24 09:25	05/12/24 15:47	1
Carbazole	10	U	10	0.68	ug/L		05/12/24 09:25	05/12/24 15:47	1
Chrysene	2.0	U	2.0	0.91	ug/L		05/12/24 09:25	05/12/24 15:47	1
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		05/12/24 09:25	05/12/24 15:47	1
Dibenzofuran	10	U	10	1.1	ug/L		05/12/24 09:25	05/12/24 15:47	1
Diethyl phthalate	10	U	10	0.98	ug/L		05/12/24 09:25	05/12/24 15:47	1
Dimethyl phthalate	10	U	10	0.77	ug/L		05/12/24 09:25	05/12/24 15:47	1
Di-n-butyl phthalate	10	U	10	0.84	ug/L		05/12/24 09:25	05/12/24 15:47	1
Di-n-octyl phthalate	10	U	10	0.75	ug/L		05/12/24 09:25	05/12/24 15:47	1
Fluoranthene	10	U	10	0.84	ug/L		05/12/24 09:25	05/12/24 15:47	1
Fluorene	10	U	10	0.91	ug/L		05/12/24 09:25	05/12/24 15:47	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		05/12/24 09:25	05/12/24 15:47	1
Hexachlorobutadiene	1.0	U	1.0	0.78	ug/L		05/12/24 09:25	05/12/24 15:47	1
Hexachlorocyclopentadiene	10	U	10	3.6	ug/L		05/12/24 09:25	05/12/24 15:47	1
Hexachloroethane	2.0	U	2.0	0.80	ug/L		05/12/24 09:25	05/12/24 15:47	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	ug/L		05/12/24 09:25	05/12/24 15:47	1
Isophorone	10	U	10	0.80	ug/L		05/12/24 09:25	05/12/24 15:47	1
Naphthalene	2.0	U	2.0	0.54	ug/L		05/12/24 09:25	05/12/24 15:47	1
Nitrobenzene	1.0	U	1.0	0.57	ug/L		05/12/24 09:25	05/12/24 15:47	1
N-Nitrosodi-n-propylamine	1.0	U	1.0	0.43	ug/L		05/12/24 09:25	05/12/24 15:47	1
N-Nitrosodiphenylamine	10	U	10	0.89	ug/L		05/12/24 09:25	05/12/24 15:47	1
Pentachlorophenol	20	U J	20	1.4	ug/L		05/12/24 09:25	05/12/24 15:47	1
Phenanthrene	10	U	10	1.3	ug/L		05/12/24 09:25	05/12/24 15:47	1
Phenol	10	U	10	0.29	ug/L		05/12/24 09:25	05/12/24 15:47	1
Pyrene	10	U	10	1.6	ug/L		05/12/24 09:25	05/12/24 15:47	1
3 & 4 Methylphenol	10	U	10	0.64	ug/L		05/12/24 09:25	05/12/24 15:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	114		37 - 150				05/12/24 09:25	05/12/24 15:47	1
2-Fluorobiphenyl	81		46 - 139				05/12/24 09:25	05/12/24 15:47	1
2-Fluorophenol (Surr)	50		16 - 80				05/12/24 09:25	05/12/24 15:47	1
Nitrobenzene-d5 (Surr)	85		51 - 145				05/12/24 09:25	05/12/24 15:47	1
Phenol-d5 (Surr)	33		10 - 56				05/12/24 09:25	05/12/24 15:47	1
			40 450				05/10/04 00:05	05/10/01 15:17	

Lab Sample ID: 460-303677-4 Matrix: Water

1

05/12/24 09:25 05/12/24 15:47

13 - 150

50

Arcadis of New York, Inc. One Lincoln Center, 110 West Fayette Street, Suite 300 Syracuse New York 13202 Phone: 315 446 9120 Fax: 315 449 0017 www.arcadis.com